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TOPICAL REVIEW

Studying Stroke Thrombus Composition After 
Thrombectomy
What Can We Learn?

Senna Staessens , PhD; Olivier François, MD; Waleed Brinjikji, MD, PhD; Karen M. Doyle , PhD;  
Peter Vanacker, MD, PhD; Tommy Andersson , MD, PhD; Simon F. De Meyer , PhD

ABSTRACT: The composition of ischemic stroke thrombi has gained an increasing amount of interest in recent years. The 
implementation of endovascular procedures in standard stroke care has granted researchers the unique opportunity to 
examine patient thrombus material. Increasing evidence indicates that stroke thrombi are complex and heterogenous, 
consisting of various biochemical (eg, fibrin, von Willebrand Factor, and neutrophil extracellular traps) and cellular (eg, 
red blood cells, platelets, leukocytes, and bacteria) components. This complex composition may explain therapeutic 
limitations and also offer novel insights in several aspects of stroke management. Better understanding of thrombus 
characteristics could, therefore, potentially lead to improvements in the management of patients with stroke. In this review, 
we provide a comprehensive overview of the lessons learned by examining stroke thrombus composition after endovascular 
thrombectomy and its potential relevance for thrombectomy success rates, thrombolysis, clinical outcomes, stroke etiology, 
and radiological imaging.
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Thrombectomy has, in recent years, dramatically 
changed acute ischemic stroke care, following 
several successful thrombectomy trials in 2015.1–

5 Besides the enormous clinical impact, endovascular 
procedures have also instigated a novel subfield in 
stroke research. By mechanically, and usually en bloc, 
removing the occluding thrombus from the patient vas-
culature, endovascular thrombectomy is providing the 
opportunity to collect thrombus material for research 
purposes.6,7 Better understanding of thrombus com-
position may help to overcome the current limitations 
of both pharmacological and mechanical revascu-
larization therapies. As stroke thrombus material is 
increasingly available, a growing number of studies is 
revealing the multifaceted composition of endovascu-
larly retrieved cerebral thromboemboli. Whereas the 
first reports mainly focused on the presence of red 
blood cells (RBCs), fibrin, and platelets,6,7 subsequent 

research showed that also other components con-
tribute to the complexity of ischemic stroke thrombi, 
including leukocytes, von Willebrand Factor (VWF), 
neutrophil extracellular traps (NETs), and extracellu-
lar DNA.8–11 The variable composition of such thrombi 
may present obstacles for recanalization therapies but 
also new opportunities in the management of patients 
with ischemic stroke. In this review, we cover the most 
important associations between thrombus composi-
tion and endovascular treatment parameters (such as 
thrombectomy recanalization rates), effect of pharma-
cological thrombolysis, clinical outcome, stroke etiol-
ogy, and radiological imaging. This review is based on 
as good as all reports (until December 2020) that used 
patient stroke thrombi to study these associations. For 
a more elaborate and in-depth description of the com-
position and internal architecture of ischemic stroke 
thrombi, we refer to recently published reviews.12,13
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THROMBUS COMPOSITION AND 
ENDOVASCULAR PROCEDURAL 
SUCCESS
The main goal of endovascular treatment is to establish 
recanalization of the affected blood vessel by removing 
the occluding thrombus, which can be achieved by a stent 
retriever, by aspiration, or by a combination of both tech-
niques. Several factors are known to influence thrombec-
tomy success rates, including thrombus location, size, and 
vascular access.7,14 First-pass complete reperfusion has, 
in recent years, become the preferred goal in endovascu-
lar therapy since the number of thrombectomy attempts 
needed to achieve good recanalization is inversely cor-
related with clinical outcome.15–18 Such first-pass effect 
is not always achieved and multiple attempts, often using 
various devices, are required in 60% to 75% of patients 
to achieve complete recanalization.15,16 In 10% to 20% 
of the patients, the attempts remain futile due to fail-
ure to remove the thrombus and establish reperfusion.14 
Procedural success rates are likely to be influenced by 
thrombus characteristics, such as stiffness, stickiness, 
deformability, and mechanical friction, all of which may be 
defined by thrombus composition. Various studies exam-
ined whether and how thrombus composition affects 
thrombus removability and thrombectomy success rates. 
A summary of these studies is presented in the Table and 
Tables I and II in the Data Supplement.

Emerging evidence indicates that the amount of 
RBCs is an important determinant of thrombus remov-
ability as RBC-rich thrombi require lower amounts of 
passes to establish recanalization.19,20 Interestingly, 
Duffy et al19 showed that the composition of thrombus 
material retrieved in the first 2 thrombectomy attempts 
contains significantly more RBCs and less fibrin com-
pared with thrombus material retrieved in subsequent 
attempts, indicating that RBC-rich thrombus material 
is easier to remove than fibrin-rich thrombi. Several 
factors could contribute to this observation. RBC-rich 
thrombi have a lower coefficient of friction compared 
with fibrin-rich thrombi.19,57 Higher amounts of RBCs 
also reduce thrombus stiffness and are associated with 
better stent strut integration into the thrombus and also 
probably lead to better conformability into an aspira-
tion catheter in case such a technique is applied.58,59 Of 
note, such increased deformability and reduced friction 
potentially also explains why RBC-dominant thrombi 
are more prone to preinterventional thrombus migra-
tion.41,42 This phenomenon, in which the entire thrombus 
migrates more distally in the intracranial blood vessel 
before intervention, was reported to reduce subsequent 
thrombectomy success rates.60

Other thrombus components may also influence 
thrombus removability. Boeckh-Behrens et al53 showed 
that higher amounts of leukocytes in the thrombus 
have a tendency to require more passes to be needed 

for removal of the thrombus. Along the same lines, the 
presence of neutrophil-derived NETs was shown to 
be associated with a higher number of thrombectomy 
attempts to remove the thrombus.11 NETs components, 
such as DNA and histones, can modify the structure of 
fibrin and render it resistant to mechanical deformation, 
which could account for the thrombectomy resistance.61 
Similarly, bacteria increase thrombus stiffness by alter-
ing the fibrin microstructure,62 which could explain why 
the presence of bacteria negatively affects septic throm-
bus removability.55 Components of the vascular wall in a 
thrombus, such as a collagen, have also been shown to 
reduce thrombus removability, although such presence 
may also be attributed to vascular injury induced by mul-
tiple passes required to remove a difficult thrombus.63

Besides the number of thrombectomy attempts to 
achieve recanalization, the degree of reperfusion as 
indicated by the modified Thrombolysis in Cerebral 
Infarction (mTICI) scale is also a key indicator of pro-
cedural success. Various studies focused on the asso-
ciation between the composition of the thrombus and 
the mTICI score. Whereas some studies were unable 
to show such correlation,24–26,31,36,41,50,51 an increas-
ing number of studies indicate that RBC-rich thrombi 
are associated with better recanalization outcomes 
(mTICI score >2b) in comparison to fibrin/platelet-rich 
thrombi.19,21–23,63 Similarly, the presence of leukocytes 
and NETs was not associated with the mTICI score in 
various reports,11,25,31,36,37,51–53 although some studies 
show that leukocytes, in particular neutrophil elastase-
positive cells and NETs, contribute to lower rates of 
complete recanalization (mTICI score <2b).47,53,46 In line 
with the need for multiple passes to remove them, both 
septic emboli and those containing vascular wall com-
ponents are associated with worse mTICI scores.55,63

An important unwanted aspect of thrombectomy pro-
cedures is thrombus fragmentation, leading to a shower 
of small thromboemboli that may travel more distally in 
the brain where mechanical removal is impossible or at 
least very difficult and risky. Fragmentation is likely influ-
enced by the biochemical and cellular make-up of the 
thrombus as this can greatly influence the mechanical 
properties. To date, reports on thrombus composition and 
thrombus fragmentation are scarce. Low RBC and high 
fibrin content,37 and higher amounts of neutrophil elas-
tase-positive cells46 have been suggested to be associ-
ated with the occurrence of secondary emboli.

In summary, it is clear that the composition of thrombi 
can influence endovascular procedural success. The 
growing body of literature indicates that RBC-rich 
thrombi are more easily retrieved which translates into 
better recanalization and clinical outcomes compared 
with fibrin/platelet-rich thrombi. Leukocytes, perhaps 
specifically NETs, may also influence success rates, 
although more studies are needed to fully confirm this 
idea. New insights on thrombus characteristics and their 
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impact on thrombus retrieval can help in the development 
of improved thrombectomy protocols and adapted device 
technology, such as stent retriever designs for easy to 
retrieve but fragment-prone thrombi64 or to improve 
retrieval of difficult fibrin/platelet-dominant thrombi.65

THROMBUS COMPOSITION AND 
THROMBOLYSIS
At present, r-tPA (recombinant tissue-type plasminogen 
activator) is the only Food and Drug Administration-
approved thrombolytic drug to pharmacologically dissolve 
the thrombotic cerebral occlusion. Use of r-tPA is, how-
ever, limited to <15% of patients due to the short thera-
peutic time window of 4.5 hours after stroke onset.66 In 
addition, recanalization after r-tPA is only successful in 

less than half of patients with a proximal artery occlu-
sion.67 The reasons for the latter are not well understood, 
but it seems that thrombus length plays a major role as 
thrombi >8 mm respond poorly or not at all to intrave-
nous thrombolysis.68,69 Recent evidence indicates that 
thrombolysis reduces the size of a thrombus retrieved 
by thrombectomy, but this effect is not associated with 
recanalization outcome.70 Most likely, also thrombus com-
position influences the response to intravenous throm-
bolysis and studies examining retrieved stroke thrombus 
material might shed some light on this so-called r-tPA 
resistance (summarized in the Table and Table III in the 
Data Supplement). The thrombolytic mechanism of r-tPA 
is based on the activation of plasminogen into plasmin, 
which degrades fibrin in the thrombus. Fibrin is an impor-
tant constituent of RBC-rich as well as platelet-rich stroke 
thrombus material, but platelet-dominant thrombi have 

Table.  Main Associations Between Thrombus Composition and Endovascular/Thrombolytic Treatment Success, Functional 
Outcome, Stroke Etiology, and Radiological Imaging

Histological 
parameter

Endovascular treatment 
success

Thrombolytic treat-
ment success Stroke etiology Radiological imaging

Stroke severity/functional 
outcome

RBCs, fibrin, 
and platelets

RBC thrombi are more easy to 
retrieve19,20 and have improved 
recanalization outcomes19,21,22 
compared with fibrin/platelet-
rich thrombi19–23

RBC-rich areas are 
more susceptible 
to thrombolysis 
compared with 
platelet-rich areas24

CE thrombi = higher RBC and 
lower fibrin/platelet content21,25–27 
vs LAA thrombi = higher RBC 
and lower fibrin/platelet con-
tent20,28–35

A HAS is associated 
with higher RBC and 
lower fibrin/platelet 
content while the 
absence is associated 
with a lower RBC and 
higher fibrin/platelet con-
tent.20,21,24–26,28,34,36–38

Higher NIHSS score at admission 
= higher RBC content,24 higher 
platelet, or fibrin bundle content39

Cryptogenic thrombi resemble 
CE31,32,34,37 vs LAA thrombi21

Higher NIHSS score 7 d postad-
mission = higher polyhedral RBC, 
platelet, or fibrin bundle content39

RBC-rich thrombi are prone 
to preprocedural thrombus 
migration41,42

Thrombi contain a 
dense outer shell 
of platelets that is 
resistant to fibrino-
lysis40

LAA thrombi = inner RBC core 
with platelets on the surface vs 
CE thrombi = platelets inter-
spersed with RBCs throughout 
the entire thrombus.31,43

Increased thrombus 
perviousness is associ-
ated with RBC-rich 
thrombi44 vs perviousness 
is associated with fibrin/
platelet-rich thrombi45

Favorable clinical outcome 
= higher RBC content20

Worse clinical outcome = higher 
polyhedral RBC content39Formation of secondary 

embolisms is more present in 
RBC-rich thrombi46 vs second-
ary embolisms are more present 
in fibrin/platelet-rich thrombi37

No association19,36,47–49 No association23,25,50

No association24–26,31,36,37,48,50,51

VWF Unknown Higher VWF 
content = increased 
r-tPA resistance8

No association8,52 Unknown Higher NIHSS score at admission 
= higher VWF content52

No association8

Leukocytes Higher leukocyte content 
= improved recanalization 
outcomes53

Unknown CE thrombi = more leukocytes 
than LAA thrombi32,33,53

Unknown Higher NIHSS score at admis-
sion/discharge = higher leukocyte 
content53 or monocytes52

Higher leukocyte content 
= more passes required53

No association19,36 No association23,25

CE thrombi are associated with 
a higher neutrophil28 and lower 
T-cell54 content

Higher neutrophil content 
= more secondary embolisms46

No association25,31,33,36,51,52 No association (T/B cells, 
eosinophils, monocyte/macro-
phages, and neutrophils)10,33,47

NETs Higher NET content = increas-
ing amount of thrombectomy 
attempts11,47 and a worse 
recanalization outcome47

Higher NET content 
= increasing r-tPA 
resistance10,11

CE thrombi = higher NET con-
tent10,28,47 and higher overall DNA 
content35 than non-CE thrombi

Unknown NETs are associated with a worse 
NIHSS score at discharge and a 
worse mRS score.47

No association11

Bacteria Presence of bacteria = more 
thrombectomy attempts55

Unknown Presence of bacteria = underly-
ing infectious pathology (eg, 
infective endocarditis)55,56

Unknown Unknown

CE indicates cardioembolic; HAS, hyperdense artery sign; LAA, large artery atherosclerosis; mRS, modified Rankin Scale; NETs, neutrophil extracellular traps; NIHSS, National 
Institutes of Health Stroke Scale; RBCs, red blood cells; r-tPA, recombinant tissue-type plasminogen activator; and VWF, von Willebrand Factor.
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other specific structural features that could impair r-tPA 
mediated fibrinolysis. Indeed, whereas RBC-rich mate-
rial mainly consists of RBCs and fibrin, platelet-dominant 
thrombus regions also contain various other extracellular 
scaffold molecules such as dense fibrin, VWF, extracel-
lular DNA, and NETs.8–11,52 Such nonfibrin components 
may contribute to r-tPA resistance by providing additional 
mechanical stabilization of the thrombus, by altering the 
structure of fibrin or by decreasing the thrombus perme-
ability,8,10,11 which is in line with the observation that RBC-
dominant thrombi are more efficiently dissolved by r-tPA 
than platelet-rich thrombi.8,24,71,72 Of note, Di Meglio et al40 
recently described a fibrinolysis-resistant outer thrombus 
shell composed of platelets, VWF, and extracellular DNA, 
forming a barrier that hampers r-tPA-mediated throm-
bolysis. Interestingly, this shell also contained inhibitors 
of fibrinolysis, such as PAI-1 (plasminogen activator 
inhibitor 1).40 Thrombus contraction, a common phase 
of thrombus formation mediated by contractile forces of 
platelets on fibrin, might also influence thrombolytic suc-
cess.73 Thrombus contraction facilitates the redistribution 
of platelets and RBCs into separate areas and mediates 
the compression of RBCs into tightly packed polyhedro-
cytes,73,74 which can reduce thrombus permeability and 
thus the degree of thrombolysis.75 Intravital thrombus 
contraction was recently demonstrated in stroke thrombi, 
resulting in a compact structure with a limited porosity.39

Taken together, insights on thrombus composition and 
architecture may reveal novel therapeutic avenues that 
can lead to improved thrombolysis. Future pharmaco-
logical treatment could include the VWF-degrading sub-
stances ADAMTS13 (a disintegrin and metalloprotease 
with thrombospondin type-1 repeats, member 13) and 
N-acetylcysteine, the DNA-cleaving enzyme DNAse1 or 
inhibitors of PAI-1, all of which show promising results 
in preclinical studies.8,10,11,76–78 Novel fibrin-targeting fibri-
nolytics could further add to the efficacy and safety of 
thrombolysis, such as Tenecteplase, which has a higher 
specificity, longer half-life, and improved resistance to 
endogenous inhibitors compared with alteplase.79

THROMBUS COMPOSITION AND STROKE 
ETIOLOGY
Due to the mainly embolic nature of acute ischemic 
stroke, thromboemboli can originate from different loca-
tions in the body.80 The original hemodynamic conditions 
in which thrombus formation took place, such as blood 
flow rate, shear stress, turbulence, and vasculature most 
likely influence the composition of the thrombus and 
thus the embolus causing the ischemic stroke.81 Arterial 
conditions with high shear stress are typically associated 
with platelet-rich thrombi, whereas venous, low shear 
stress conditions are assumed to promote the develop-
ment of more coagulation-driven thrombi. Stroke etiology 

is classified according to the TOAST criteria (Trial of ORG 
10172 in Acute Stroke Treatment), identifying the ori-
gin as cardioembolic, large artery atherosclerotic (LAA), 
small vessel occlusion, other (eg, carotid dissection or 
paradoxical embolisms), or a cryptogenic origin.82 To pre-
vent recurrent stroke, good knowledge of the underly-
ing risk factors and potential pathogenesis is crucial in 
patient follow-up and treatment. Recurrent strokes still 
occur in ≈25% of all patients with stroke within 5 years 
after the initial event, highlighting the need for improved 
primary and secondary prevention.83 Cardioembolic 
strokes are commonly caused by atrial fibrillation and 
are mainly treated using anticoagulants, whereas LAA 
strokes are mostly treated using antiplatelet agents (eg, 
aspirin).84 Cryptogenic strokes, which comprise approxi-
mately a third of all ischemic strokes, pose a significant 
problem as the appropriate secondary prevention strat-
egy is difficult to select in the absence of a known under-
lying pathogenesis.

To better understand the variable stroke thrombus 
pathogenesis, numerous studies have investigated the 
link between the histological composition of retrieved 
thrombi and the origin of the thrombus.6,85 A summary of 
these studies is shown in the Table and Table IV in the 
Data Supplement.

The majority of reports mainly focused on the 
quantity of RBCs and fibrin and show inconsistent 
results. Whereas several studies found that cardioem-
bolic thrombi are characterized by higher amounts of 
RBCs and lower amounts of fibrin compared with LAA 
thrombi,21,25–27 other studies reported the opposite20,28–34 
or found no association at all.19,36,47,48 Forming the main 
target in antiplatelet therapy, platelets are an important 
factor in thrombosis and are thought to play a particular 
role in high-shear conditions. Two studies found that car-
dioembolic thrombi contain higher amounts of platelets 
in comparison to LAA thrombi,30,31 whereas the opposite 
was reported by others.35,51 Various studies showed no 
association between stroke etiology and platelet con-
tent.25,27,34,47 Similarly, VWF has been shown to be pres-
ent in all thrombi regardless of their origin, with amounts 
ranging from 0.1% to 95%.8,23,52 Initial reports, using low 
sample sizes, showed no link between VWF content and 
stroke etiology.8,52 Data on leukocytes also remain incon-
sistent. Various reports indicate that leukocyte content is 
not related to stroke etiology,19,20,25,33,36,47 whereas several 
other studies did find an association between higher leu-
kocyte content and cardioembolic origin.32,33,53 Different 
leukocyte subtypes, including neutrophils, eosinophils, 
monocytes/macrophages, T cells, and B cells, have also 
been linked with stroke etiology, but the overall findings 
remain fragmentary and not conclusive at this moment 
(Table and Table IV in the Data Supplement).10,28,33,47,52,54 
NETs or extracellular DNA seems to be particularly pres-
ent in cardioembolic thrombi.10,28,35,47 While it is common 
to see calcium deposition in many LAA lesions using 
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imaging modalities, radiological studies indicate that only 
1.3% of thrombi are calcified.86,87 At this point, only one 
study, using a specific histological staining method, has 
evaluated the presence of calcifications in a limited sub-
set of stroke thrombi,88 highlighting the need for addi-
tional large-scale studies to evaluate this aspect.

Besides the quantitative determination of thrombus 
components, various studies have also evaluated the 
internal architecture of thrombi from different etiologies. 
The presence of serpentine and layered fibrin was not 
linked with etiology,48,49 but LAA thrombi were found to 
more frequently consist of an inner RBC-rich core sur-
rounded by platelets along the thrombus surface, in con-
trast to cardioembolic thrombi in which platelets were 
typically found to be interspersed with RBCs.31,43

Taken together, various studies attempted to link throm-
bus composition and stroke etiology, but the overall outcome 
remains largely inconclusive. The reported inconsistencies 
are most likely related to the low sample sizes used in 
the majority of studies, as underlined by a recent meta-
analysis.6 Nevertheless, 2 of the largest patient thrombus 
cohorts indicate that cardioembolic thrombi contain higher 
amounts of fibrin/platelet aggregates and lower amounts 
of RBCs compared with other etiological subtypes.32,33 
Based on the histological analysis, these large studies sug-
gest that the majority of cryptogenic thrombi most likely 
originate from a cardioembolic etiology.32,33 Additional 
large-scale studies will be needed to further clarify if and 
how thrombus composition, organization, and structure 
can reveal information on stroke etiology and guide treat-
ment using anticoagulant therapy, antiplatelet therapy, or 
other strategies to prevent secondary events.7,89 Another 
uncertainty in this context is that it is currently unknown if 
the composition of the original thrombus, mostly located 
in the heart or the carotid bifurcation, is reflected in the 
composition of the emboli found in the brain vasculature. 
For instance, no evidence is available whether certain parts 
of the parental thrombus are more prone to embolize, high-
lighting the potential differences between the parental 
and embolized thrombi. Stroke etiology has typically been 
classified according to the TOAST criteria. Currently, newer 
classification methods are available such as the ASCOD 
(atherosclerosis, small vessel disease, cardioembolism, 
other and dissections) criteria that assign a degree of 
likelihood to a patient-specific etiological classification.90 
Potentially, such improved etiological classifications will fur-
ther strengthen the link between thrombus characteristics 
and stroke etiology. Finally, histological thrombus analysis 
might also be used to identify less common etiologies such 
as septic emboli and atrial myxomas. Using Gram-staining, 
2 studies revealed the presence of Gram-positive bacteria 
in thrombi from patients with infective endocarditis or other 
infectious diseases.55,56 Since diagnosis of stroke due to an 
infectious disease is often not straightforward, early iden-
tification of a septic embolus might help to initiate early 
antibiotic treatment.

PREDICTION OF THROMBUS 
COMPOSITION BY RADIOLOGICAL 
IMAGING
Computed tomography (CT) and magnetic resonance 
imaging are the primary imaging modalities used to 
exclude cerebral hemorrhage, to assess the extent of 
infarction and the at-risk penumbra, to grade the collat-
eral circulation, and to identify the location of the arterial 
occlusion. Apart from identifying thrombus location and 
its size, imaging also has the potential to allow early char-
acterization of thrombus composition and permeability, 
which could guide procedural decisions such as selec-
tion of thrombus-specific retrieval protocols or device 
technologies. A summary of studies addressing the link 
between thrombus composition and radiological imaging 
is given in the Table and Table V in the Data Supplement.

At the site of the cerebral occlusion a hyperdense 
artery sign and a susceptible vessel sign is detected 
in ≈50% of patients with ischemic stroke using CT 
or magnetic resonance imaging, respectively.91 The 
vast majority of studies indicate that both the pres-
ence and the density, typically measured in Hounsfield 
units, of hyperdense artery sign on CT is associated 
with RBC-dominant thrombi, while the absence of 
this radiological sign is indicative of fibrin/platelet-rich  
thrombi.20,21,24–26,28,34,36–38,53 The correlation of hyper-
dense artery sign and susceptible vessel sign with the 
presence of RBCs can be explained by the concentra-
tion of hemoglobin in the thrombus.92–95 Current imag-
ing modalities, however, can only discriminate between 
RBC-dominant and fibrin/platelet-dominant thrombi and 
are unable to accurately identify mixed thrombi. Brinjikji 
et al96 recently demonstrated in vitro that dual-energy CT 
can be used to improve the characterization of thrombus 
composition, but this remains to be evaluated in patients. 
Apart from CT and magnetic resonance imaging-based 
imaging, intravascular optical coherence tomography 
can also be used to determine thrombus composition. 
Intravascular optical coherence tomography uses a fiber 
optic wire that both emits and records the reflection of 
light while simultaneously being rotated and pulled back 
from the artery, giving rise to an image by measuring the 
backscattering of light from the vessel wall and throm-
bus.97 While currently in use to evaluate the morphol-
ogy of coronary plaques during coronary endovascular 
interventions, recent in vitro studies showed that opti-
cal coherence tomography can be used to discriminate 
between RBC-dominant, fibrin-dominant, and mixed-
blood clots as well.98,99

Apart from identifying thrombus composition, radio-
logical imaging can also be used to assess thrombus 
permeability, also termed thrombus perviousness. Throm-
bus perviousness is defined as the degree in which a 
contrast agent is able to flow through the structure of 
the thrombus and is measured by comparing thrombus 
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attenuation on noncontrast CT with that on CT angiog-
raphy, thereby giving an idea about residual blood flow 
through the thrombus.100 An increase in thrombus atten-
uation between the 2 respective imaging techniques 
implies a higher thrombus perviousness as contrast 
media enters the thrombus.100 Higher thrombus pervi-
ousness is associated with better functional outcome, 
smaller infarct volumes, and improved recanalization 
outcomes with both thrombolytic and endovascular ther-
apy.100 Indeed, pervious thrombi have a porous structure 
that allows the passage of residual arterial flow or throm-
bolytics. Current reports with regard to the histology of 
the thrombus and thrombus perviousness are conflict-
ing.44,45 Benson et al44 have shown that RBC-dominant, 
fibrin/platelet-poor thrombi are associated with more 
permeable thrombi on CT imaging. However, Berndt et 
al45 have shown that higher amounts of fibrin/platelet 
conglomerates and lower amounts of RBCs are associ-
ated with more permeable thrombi. As described earlier, 
the degree of thrombus contraction, a process that is 
dependent on platelets, most likely contributes to perme-
ability and differences in contraction might explain the 
conflicting results.

In the future, it will be interesting to further establish 
the link between radiological signs and thrombus com-
position and to use such insights to develop pretreat-
ment decision-making strategies to increase first-pass 
recanalization success rates.

THROMBUS COMPOSITION, STROKE 
SEVERITY, AND FUNCTIONAL OUTCOME
In the past decade, several studies have identified vari-
ous clinical, interventional, and blood parameters as inde-
pendent predictors of clinical outcome. Some examples 
of these parameters include a higher National Institutes 
of Health Stroke Scale score at admission,101 diabetes,102 
multiple thrombectomy attempts,15,16,101 higher neutrophil 
counts,102 higher neutrophil/lymphocyte ratio,103 and a 
higher VWF/ADAMTS13 ratio.104 The question whether 
the composition of the occluding thrombus is directly 
associated with functional outcome has also been 
addressed. Various studies have attempted to correlate 
thrombus composition with functional parameters such 
as stroke severity (National Institutes of Health Stroke 
Scale) and clinical outcome (modified Rankin Scale; 
Table and Table VI in the Data Supplement). Whereas not 
all studies could confirm strong associations,8,11,23,25,40,50,52 
some interesting correlations have been reported. For 
example, stroke severity, based on admission National 
Institutes of Health Stroke Scale scores, is positively cor-
related with the content of RBC, platelets, fibrin, VWF, 
and monocytes in the occluding thrombus.24,39,52 In par-
ticular, polyhedral RBCs, a morphological marker of clot 
contraction, were associated with more severe strokes, 
most likely because high amounts of polyhedrocytes 

render thrombi more compact, less deformable, and 
less porous.39 Thrombus composition was also found 
to be associated with stroke outcome. Apart from lower 
amounts of RBCs,20 especially higher amounts of leuko-
cytes and NETs and in the thrombus have been linked 
with a poor outcome.39,47,53

LIMITATIONS AND FUTURE 
PERSPECTIVES
Since the arrival of endovascular thrombectomy, stroke 
thrombi have been collected and studied. It has become 
clear that stroke thrombi are complex and heterogenous, 
consisting of various cellular and molecular components 
that affect endovascular/thrombolytic success rates 
and that are associated with stroke etiology and radio-
logical signs. Current imaging techniques can to some 
extent be used to characterize the thrombus before 
therapy, providing an early sense of how the thrombus 
will respond. Increased knowledge on thrombus com-
position has instigated refined treatment strategies to 
improve thrombectomy first-pass recanalization rates 
and to increase the efficiency and safety of pharmaco-
logical thrombolysis. Yet, research on thrombi retrieved 
via thrombectomy is not without limitations, which should 
be considered. First, only thrombi from large vessel 
occlusions that did not dissolve spontaneously or after 
infusion of r-tPA and that can be successfully retrieved 
via mechanical thrombectomy are available for study. 
Thus, a selection bias exists, excluding r-tPA-suscep-
tible or thrombectomy-resistant thrombi. The improve-
ment in radiological characterization of thrombi could 
potentially be used in the future as a surrogate to esti-
mate the composition of these inaccessible thrombi.96 
Second, thrombus characteristics could be influenced 
by patient-specific variables, such as prestroke anti-
thrombotic treatment, pharmacological thrombolysis, or 
the technique of mechanical thrombectomy itself. Little 
information is currently available on these aspects and 
should be addressed in future studies.

While early studies may have been limited by the low 
sample sizes, they provided proof-of-concept for throm-
bus-driven stroke research and laid the foundation for 
larger-scale studies. Various national and international 
initiatives have, in the meantime, established large-scale 
thrombus registries, such as the EXCELLENT (Embotrap 
Revascularization Device Registry; URL: https://www.
clinicaltrials.gov; Unique identifier: NCT03685578),105 
STRIP (Stroke Thromboembolism Registry of Imag-
ing and Pathology),23,51 and the THRAPS (Thrombus 
Analysis in Intra-Arterial-Treated Patients With Acute 
Ischemic Stroke) (MR CLEAN [A Multicenter Random-
ized Clinical Trial of Endovascular Treatment for Acute 
Ischemic Stroke in the Netherlands]) registries. It will be 
interesting to see how results from these large studies 
will further our understanding of ischemic stroke thrombi 
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and potentially inspire novel ideas for optimized stroke 
treatment.
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