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1 Abstract 
An acute ischaemic stroke is due to the sudden blockage of an intracranial blood vessel by an 

embolised thrombus. In the context of setting up in-silico trials for the treatment of acute 

ischaemic stroke, the effect of a stroke on perfusion and metabolism of brain tissue should be 

modelled to predict final infarcted brain tissue. This requires coupling of blood flow and tissue 

perfusion models. A 1-D intra cranial blood flow model and a method to couple this to a brain 

tissue perfusion model for patient-specific simulations is presented. Image based patient-

specific data on the anatomy of the circle of Willis is combined with literature data and models 

for vessel anatomy not visible in the images to create an extended model for each patient from 

the larger vessels down to the pial surface. The coupling between arterial blood flow and tissue 

perfusion occurs at the pial surface through the estimation of perfusion territories. The coupling 

method is able to accurately estimate perfusion territories. Finally, we show that blood flow 

can be approximated as steady state flow at the interface between arterial blood flow and tissue 

perfusion to reduce the cost of organ-scale simulations. 
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3 Introduction 
An acute ischaemic stroke is the most common type of stroke. It is fatal to an estimated three 

million people globally every year and may lead to a dramatic loss of quality of life in survivors 

(1). An acute ischaemic stroke occurs when blood supply to the brain is suddenly blocked by 

an embolised thrombus. This results in the acute loss of blood flow to downstream vessels. 

Consequently, brain tissue is starved of oxygen resulting in necrosis causing disability and 

ultimately death. Currently only a few treatment options exist. Improving existing treatments 

and developing and approving new treatments is a difficult, lengthy, and expensive process, 

prone to failures during clinical trials even after successful animal trials. 

The INSIST project1 (2) aims to develop computational models that will be used to simulate a 

clinical stroke trial on a virtual population. The (virtual) patient in this context is generally a 

set of parameters and other data that is used in a computational model. In silico trials (IST) can 

overcome some of the limitations of clinical trials, lower their cost, contribute to developing 

more efficient clinical trials, or shorten the preclinical trajectories (3). IST are closely related 

to computational biomedicine or personalized medicine. The goal is to predict the efficacy and 

efficiency of a treatment, drug or device. As such they are similar to normal clinical trials where 

the testing happens on animals or humans. Computational modelling has become the standard 

in many industries from the design of air planes to electronics. Likewise, computational models 

in the medical field are slowly gaining momentum (4–9). 

One of the goals of INSIST is to predict the location and volume of the infarcted brain tissue 

for stroke patients both for individual patients and at the population level. This requires 

modelling blood flow across length scales incorporating three orders of magnitude, from the 

large arteries via the arterioles and the pial surface vessels to the penetrating vessels and the 

microcirculation deep in the brain. Blood flow in large vessels are typically modelled using 

lumped parameter or 1-D blood flow models, whereas the microcirculation is typically 

modelled as a porous medium (10). In addition, there is limited knowledge about the vessel 

anatomy between the large vasculature and the microcirculation. Data of the intermediate 

vessels are limited or only available as statistical scaling laws. Predicting infarcted volume 

requires thus the coupling of arterial blood flow models to tissue perfusion models. A tissue 

perfusion model is presented in another article in this same special issue of Interface Focus 

(11). A 1-D blood flow model has to be coupled to this tissue perfusion model, which presents 

several challenges. 

Firstly, medical images often suffer from low resolution. Scans from stroke patients are often 

done quickly to get an assessment of the stroke severity. As a result, the scans typically only 

contain the circle of Willis and a few of the major cerebral arteries, see Figure 2a. This presents 

a problem as this does by far not provide sufficient information for the coupling between 

arterial blood flow and tissue perfusion. However, there are high resolution scans available 

from different individuals (12,13). Unfortunately, this dataset, referred to as the BraVa dataset, 

does not contain other information such as pressure, heart rate, Young’s modules etc. 

Secondly, information about the perfusion territories of the cerebral arteries can be determined 

but is limited (14). The perfusion territory of a blood vessel is the region of tissue that receives 

blood from that vessel. Not much is known about the perfusion territories of the brain and data 

are again sparse. Coupling blood flow to tissue perfusion in a patient-specific manner requires 

the estimation of the perfusion territory for every perfusing vessel. 

 
1 www.insist-h2020.eu 
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Here, a method is presented to couple blood flow in cerebral blood vessels to cerebral tissue 

perfusion. Patient-specific image-based vessel segmentations are combined with literature data 

and models for vessel anatomy not visible in the images to create an extended model for each 

patient. Using Murray's law, we estimate perfusion territories on the pial surface using a 

coupling algorithm. Arterial blood flow is simulated with a 1-D pulsatile blood flow model 

with three-element windkessel elements at the boundaries. We show that at the pial surface, 

blood flow pulsatility is small and blood flow can be approximated as steady state flow. 

4 Methods 

4.1 Vasculature of Virtual Patients 
Vessel centrelines are extracted from vessel segmentations of CT angiographs from stroke 

patients entering the hospital. The centrelines contain the Circle of Willis (CoW) and the side 

branches, see Figure 1a. The side branches are the posterior cerebral artery (PCA), anterior 

cerebral artery (ACA) and middle cerebral artery (MCA). This patient-specific vasculature is 

first extended with the larger vessels, starting from the heart, see Figure 1b. The smaller vessels 

to the cerebellum and brainstem are also added. The default parameters describing these 

arteries are taken from literature (15,16) and are shown in Table 1. 

Table 1: Default values for large vessels, adapted from (15,16). 

Vessel Name Length (mm) Proximal 

Radius (mm) 

Distal Radius 

(mm) 

Young’s 

modulus 

(MPa) 

Ascending 

Aorta 

40 12 12 0.4 

Aortic Arch I 20 11.2 11.2 0.4 

Brachiocephalic 34 6.2 6.2 0.4 

Aortic Arch II 39 11 11 0.4 

L. common 

carotid 

208 2.5 2.5 0.4 

R. common 

carotid 

177 2.5 2.5 0.4 

R. subclavian 34 4.23 4.23 0.4 

Thoracic aorta 156 9.99 9.99 0.4 

L. subclavian 34 4.23 4.23 0.4 

L ext. carotid 177 1.5 1.5 0.8 

L int. carotid I 177 2 2 0.8 

R int. carotid I 177 2 2 0.8 

R ext. carotid 177 1.5 1.5 0.8 

R. vertebral 148 1.36 1.36 0.8 

R. brachial 422 4.03 4.03 0.4 

L. brachial 422 4.03 4.03 0.4 

L. vertebral 148 1.36 1.36 0.8 

L. PCoA 15 0.73 0.73 1.6 

R. PCoA 15 0.73 0.73 1.6 

Basilar I 5.6 1.62 1.62 1.6 

L. MCA 119 1.43 1.43 1.6 
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R. MCA 119 1.43 1.43 1.6 

L. ACA, A1 12 1.17 1.17 1.6 

R. ACA, A1 12 1.17 1.17 1.6 

L. PCA, P1 5 1.07 1.07 1.6 

R. PCA, P1 5 1.07 1.07 1.6 

L. ACA, A2 103 1.2 1.2 1.6 

R. ACA, A2 103 1.2 1.2 1.6 

ACoA 3 0.74 0.74 1.6 

L. PCA, P2 86 1.05 1.05 1.6 

R. PCA, P2 86 1.05 1.05 1.6 

R. SCA 10 0.78 0.78 1.6 

L. SCA 10 0.78 0.78 1.6 

R. AICA 10 0.63 0.63 1.6 

L. AICA 10 0.63 0.63 1.6 

Basilar II 5.6 1.62 1.62 1.6 

Pontine I 5 0.2 0.2 1.6 

Pontine II 5 0.2 0.2 1.6 

Pontine III 5 0.2 0.2 1.6 

Pontine IV 5 0.2 0.2 1.6 

Pontine V 5 0.2 0.2 1.6 

Pontine VI 5 0.2 0.2 1.6 

Pontine VII 5 0.2 0.2 1.6 

Pontine VIII 5 0.2 0.2 1.6 

Pontine IX 5 0.2 0.2 1.6 

Pontine X 5 0.2 0.2 1.6 

Pontine XI 5 0.2 0.2 1.6 

Pontine XII 5 0.2 0.2 1.6 

Basilar III 5.6 1.62 1.62 1.6 

Basilar IV 5.6 1.62 1.62 1.6 

Basilar V 5.6 1.62 1.62 1.6 

R. PICA 10 0.63 0.63 1.6 

L. PICA 10 0.63 0.63 1.6 

R. vertebral II 20 1.36 1.36 0.8 

L. vertebral II 20 1.36 1.36 0.8 
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Figure 1: (a) Segmentation from a CT angiography from a stroke patient in blue. The 

segmentation contains the circle of Willis and several side branches. Centrelines are extracted 

and shown in red. (b) the large arteries, starting from the heart leading up to and including the 

patient specific circle of Willis. Smaller vessels to the brain stem and cerebellum are also 

included. Note that the vessels are not drawn to scale. (c) One of the centreline segmentations 

from the BraVa dataset (ID: BG18). Each vessel is smoothed by setting the radius at every 

point to the mean radius of that vessel. Vessels are colour coded according to which major 

cerebral vessel they belong. The circle of Willis vessels from the BraVa segmentation are not 

used and are replaced by the patient-specific circle of Willis from a. (d) The final patient-

specific arterial network. Patient-specific data from 1a are extended with literature values from 

a 

d 

b 

c 
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b and high-resolution data from c. This is the network that is used in the 1-D blood flow 

simulations. Note that the vessels are not drawn to scale.  

Centrelines of high resolution scans of cerebral arteries are available from 61 different 

individuals (12,13). These centrelines are referred to as the BraVa dataset. The arteries in the 

datasets are labelled by six major cerebral arteries from which they emerged, i.e. left and right 

ACA, MCA and PCA, and the CoW, see Figure 1c. One segmentation of the BraVa set is 

randomly chosen and attached to the patient specific vasculature. For each major cerebral artery 

in the patient vasculature, the equivalent vessel in the BraVa vasculature is used as an 

attachment point. The radii of the added vessels are scaled by the ratio of equivalent cerebral 

vessels, ACA, MCA, PCA etc, between the BraVa dataset and the patient specific vasculature. 

All radii are scaled to preserve any scaling law between the vessels.  

These three sets of data are combined to create a patient-specific vasculature that starts at the 

heart and ends close to the pial surface. For each major cerebral artery in the patient dataset, 

the relevant vessels in the Brava dataset are identified and then attached to each other. On the 

other end of the patient anatomy, the large arteries to the heart are connected, see Figure 1d. 

4.2  1-D Blood Flow Modelling 
1-D blood flow models (17–23) are able to model blood flow in sufficient detail without 

becoming too computationally expensive. Blood flow is modelled as a viscous incompressible 

fluid. Vessels are modelled as elastic tubes with a taper. Blood flow is assumed to be 

rotationally symmetric around the centreline of the vessel. Following (17,20), the continuity of 

mass and momentum equations are obtained by integrating the Navier-Stokes equations over 

two dimensions, resulting in 

𝜕𝑣̅𝑥

∂t
+ (2α − 1)𝑣̅𝑥

∂𝑣̅𝑥

∂x
+ (α − 1)

𝑣̅𝑥
2

A

∂A

∂x
+

1

ρ

∂p

∂x
=

−2αμπ𝑣̅𝑥

(α − 1)ρA
, (1) 

 

∂A

∂t
+

∂(A𝑣̅𝑥)

∂x
= 0, (2) 

with 

p = pext +
β

A0
(√A − √A0), (3) 

 

β =
√πEh

(1 − ν2)
, (4) 

and where 𝑣̅𝑥 is the average velocity, α is a momentum correction factor, A is the cross-

sectional area, A0 is the initial area, p is the pressure, μ is the dynamic viscosity, ρ the density 

of blood, pext is a reference pressure, E is the Young’s modules, and ν is the Poisson ratio. 

Vessels are linked together at bifurcations by the method of characteristics (17–23). The 

method used here to solve the resulting equations is the MacCormack method, a second-order 

finite difference method. The initial conditions are zero velocity and diastolic pressure 

everywhere. Every vessel has a minimum of three nodes and a maximum separation of 10mm. 

The simulation is run for a small number of heart beats and iterated until the tolerance between 

iterations is below a threshold, defined as  
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|pi⃗⃗  ⃗ − pi−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

|pi⃗⃗  ⃗|
< 10−3 (5) 

with pi⃗⃗  ⃗ being a vector of the pressure at all nodes at all times during the 𝑖-th cardiac cycle and 

pi−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  a vector of the pressure at the previous iteration 𝑖 − 1. The typical number of simulated 

cardiac cycles before convergence is below 10. 

The heart provides the inlet boundary conditions to the model while a three-element windkessel 

model is used at each outlet. Note that the BraVa anatomies typically have in the order of 100 

outlets. Volume flow rate at the inlet is given by an inlet function and taken from Boileau et al 

(21). The inlet function is scaled based on stroke volume and heart rate for each patient. The 

total resistance and compliance of the full vascular tree model is calculated by (24) 

Rtot =

1
3Psys +

2
3Pdia

SV ∗ HR
(6) 

and  

Ctot =
τ

Rtot

(7) 

with Psysthe systolic pressure, Pdia the diastolic pressure, SV the stroke volume, HR the heart 

rate and τ the aortic pressure decay time constant. The compliance of the patient network is 

calculated from the sum of the vessel compliances given by 

C1D =
3A√AL

2√πEh
(8) 

where A is the area, L is the length, E is the Young’s modules and h is the thickness of the 

vessel. The thickness of the vessel is calculated using an empirical function given by 

ℎ = 𝑅0[𝑎 exp(𝑏𝑅0) + 𝑐 exp(𝑑𝑅0)] (9) 

with 𝑅0 the initial radius, 𝑎 = 0,2802, 𝑏 = -5,053cm-1, 𝑐 = 0,1324 and 𝑑 = -0,1114cm-1 (23). 

The network compliance is substantial for large vessel and is therefore subtracted from the total 

compliance. The resistance of the patient network is assumed to be negligible for the large 

arteries compared to the total resistance. 

Known distributions of cardiac output into the main vessels are used to distribute the resistance 

and compliance to each outlet. That is, 65% goes to the lower body through the Thoracic aorta, 

5% goes to the arms through the left and right Brachial, and the rest to the other outlets. The 

resistance and compliance are distributed to the outlets, RT and C, based on the fraction of the 

radius cubed, e.g. Murray's law (25) 

The total resistance of the attached cerebral arteries is subtracted to account for the resistance 

added by the attachment of the BraVa vessels to the patient network. The resistance of the 

added vasculature is calculated by iteratively adding resistances depending on whether vessels 

run in parallel or serial. The two resistance windkessel parameters, R1 and R2, of each outlet 

are calculated by: 

R1 =
ρ

A0

√
2Eh

3ρR0

(10) 
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R2 = RT − R1 (11) 

The choice for R1 leads to the minimization of unnatural wave reflections at the outlets (26). 

The outlets of the 1-D blood flow model provide blood flow to the perfusion territories of the 

brain. A stroke is modelled as a complete blockage of flow and pressure by enforcing Neumann 

pressure boundary conditions at the boundary of the clot. The default parameters of the model 

are listed in Table 2. 

The extension process proceeds along the following steps: 

1. Identify identical vessels in both datasets by their label; 

2. Extract the smaller upstream vessels starting from the major cerebral artery; 

3. Calculate the mean radius for identical vessels in both datasets; 

4. Scale the radii of the upstream vessels identified previously accordingly; 

5. Attach the upstream vessels to the relevant end in the patient vasculature; 

6. Calculate the resistance of the appended vessels; 

7. Subtract the resistance and distribute the remainder to the appended ends. 

Table 2: Default model parameters 

Parameter Value 

Density 1050 kg m-3 

Viscosity 0.0035 Pa s 

Venous Pressure 2500 Pa 

Heart Rate 60 min-1 

Systole Pressure 17300 Pa 

Diastole Pressure 10100 Pa 

Stroke Volume 70 mL 

Momentum 

correction factor 

1.1 

Aortic pressure 

decay time 

1.34 s 

Poisson ratio 0.5 

 

To characterise the strength of the pulsatility of blood flow, pulsatility indices are used. The 

pressure pulsatility index is given by 

Pip =
pmax − pmin

pmean

(12) 

with pmax the maximum pressure, pmin the minimum pressure, and pmean the mean pressure. 

The velocity pulsatility index is given by 

Piv =
vmax − vmin

vmean

(13) 

with vmax the maximum velocity, vmin the minimum velocity, and vmean the mean velocity. 

4.3 Estimating Perfusion Territories 
Coupling blood flow to tissue perfusion in a patient-specific manner requires the estimation of 

the perfusion territory for every perfusing vessel, so for every outlet of the BraVa sets (i.e left 

and right ACA, MCA and PCA), the Cerebellum and the brainstem. Using Murray's law, 
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perfusion territories on the pial surface are estimated using a coupling algorithm. The radius of 

the outlet is assumed to be related to the perfusion of tissue by Murray’s law given by 

𝑟𝑖
3 ∝ 𝑄𝑖 (14) 

with ri
3 the cubic radius at outlet i and 𝑄𝑖 the volume flow rate at outlet i. 

We estimate the fraction of the pial surface that belongs to each outlet i of the patient 

vasculature at the pial surface with the use of Murray's law. This fraction is calculated as  

fi =
𝑄𝑖

∑ 𝑄𝑗
n
j=0

=
ri
3

∑ rj
3n

j=0

(15) 

with 𝑄𝑖 the volume flow rate at the outlet and ri
3 the cubic radius at the outlet. The volume flow 

rate per area, or flow velocity, is uniform over the pial surface under these assumptions. To 

what extend this is also true for a real brain is not clear.  

The pial surface is represented as a uniform triangulated mesh, Figure 2a, where each triangle 

represents an equal sized area on the mesh. The mesh was presented in the study of Garcia-

Gonzalez et al where it was used for finite element computations (27). The triangles are 

grouped based on distance, calculated with Dijkstra's algorithm, using a coupling algorithm, 

Figure 2b and 2c. The number of surface elements that belongs to each outlet is calculated by 

𝑛𝑖 = 𝑓𝑖𝑁𝑇𝑜𝑡 (16) 

with 𝑁𝑇𝑜𝑡 the number of triangles of the uniform triangulated mesh. 

The coupling algorithm ensures that the size of the perfusion territories is scaled based on the 

cubed radius of vessel that perfuses it, i.e. Murray's law. After the coupling, any unassigned 

surface elements are assigned to the nearest cluster. The surface elements are assigned to the 

nearest outlet based on their separation on the surface. This is an iterative algorithm to account 

for the mismatch between the pial surface and the outlet. The outlet position is updated by 

taking the centre point of the assigned surface elements as a new guess. The new centre point 

is determined by minimizing the maximum separation between points.  

Data from vessel encoded arterial spin labelling (VEASL) is used to confine the sampling of 

the mesh to regions that belong to the same major cerebral vessel (28–30). This is done to 

achieve a better match between the estimated area and area of the surface mesh. The pial 

surface mesh does not contain the complex folding of the brain nor does it contain well 

separated frontal and temporal lobes. By using VEASL data, the mismatch between the 

expected area and the area of the surface mesh can be limited to the major territories of the 

brain. The major territories of the brain are the left and right ACA, MCA and PCA, the 

Cerebellum and the brainstem. Vessels perfusing the pial surface are confined to the equivalent 

regions in the VEASL data. The coupling algorithm tries to find the sets for which the sum of 

distances within the set of surface elements is minimal. Note that the cluster sizes are calculated 

beforehand using equation 16. 
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Figure 2: (a) The pial surface as a uniform triangulated mesh. (b) Nodes are the centres of the 

triangles from a, shown as red circles, and connected by red lines if they share a vertex. The 

distance between connected nodes is the Euclidean distance. (c) The outlet of a vessel is 

projected to the surface, blue circle. The nearest surface elements, i.e. triangles, are assigned 

to the nearest outlet, green circles. Distance between surface elements is determined by 

Dijkstra's algorithm from the graph in b. 

The root of the perfusion territories can be thought of as the mean position of the surface 

elements in that set. The surface is transformed into a graph and Dijkstra’s distance algorithm 

is used, Figure 2b. Euclidean distance can also be used if the surface is relatively flat. The 

pseudo code is given by: 

1. Determine the number of surface elements per outlet with equation 16 

2. Project the outlet to the pial surface as an initial guess for the root 

a 

b c 
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3. Find the closest set of elements to the root 

4. Minimize the root-element distance within the clusters 

5. Update the root  

6. Iterate until convergence 

7. Repeat for each major cerebral region. 

The mean flow velocity at outlets of the blood flow model is distributed evenly across the 

relevant perfusion territory. Each triangle of the mesh receives a volume flow rate based on its 

fractional area such that the flow velocity, i.e. volume flow rate per area, is uniform within 

each perfusion territory and within the major region set by the VEASL data. The result of the 

coupling is shown in Figure 4, error estimation in Figure 5 and blood flow at the pial surface 

in Figure 6.  

5 Results and Discussion 
Extending patient-specific data on the anatomy of the circle of Willis with high-resolution data 

from the BraVa sets and literature can solve some of the problems of missing vessels. We 

include the arteries starting at the heart such that we can capture the redirection of flow in the 

event of a stroke. This is often excluded from many models that look at stroke. For large vessel 

occlusions, it is likely that the redistribution of blood can have significant effects on perfusion. 

A more detailed study on this is underway and will be reported elsewhere. 

The extended patient vasculature, Figure 1d, should contain sufficient detail to capture all 

relevant effects such as the redistribution of flow after a stroke and make it possible to model 

volume flow rates, pressure and other variables. Once the patient anatomy is extended to the 

smaller cerebral arteries, we can begin to map the flow in the arteries to the brain. Modelling 

the entire cerebral vasculature down to the microcirculation is too computationally expensive 

and probably also not required for our purpose. Being able to switch to a more efficient model 

is therefore crucial. The 1-D blood flow model used in this paper is commonly used, well 

studied and validated. The outlets of the 1-D blood flow model provide blood flow to the 

perfusion territories of the brain. 

Statistically accurate vessel networks can be generated between the outlets of the BraVa sets 

and the coupling points at the pial surface (Figure 1c) using constrained constructive 

optimization (31–33). However, one of the underlying assumptions of such algorithms is that 

the radii at the terminal points are equal and their positions are randomly chosen within a target 

volume. Since the assumption here is that there is no seepage through the vessel wall, the 

volume flow rates at the outlets would all be equal for a symmetric bifurcating tree. Simple 

scaling laws, such as Murray’s law and a length-to-radius ratio, can be used to generate 

bifurcating trees as the 1-D blood flow model only depends on the length and the radius and 

not the position of the vessels.  

Pulsatile blood flow was simulated in the anatomy of Figure 1d, using parameters from table 

2. The simulations where performed for seven heartbeats, after which the solution converged. 

Time dependent volume flow and pressure along the anatomy was obtained, and from that both 

velocity and pressure pulsatility indices were computed. 
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a 

c 
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Figure 3: (a) Results from the 1-D blood flow simulation for three different locations in the 

vasculature. The volume flowrate, pressure and radius over time are plotted. The locations are 

chosen based on their size. The chosen vessels were the right common carotid artery, the right 

middle cerebral artery and one outlet vessel belonging to the right middle cerebral vasculature. 

(b) Mean pressure for the patient-specific vasculature calculated by the 1-D blood flow model. 

Note that the vasculature shown here is mapped to a 3-D anatomy that is the same for all 

patients and is used only for visualisation, the length and radii are not to scale. (c) Pressure 

pulsatility index in the patient-specific vasculature of the CoW and downstream vessels.  (d) 

Pressure and velocity pulsatility indices as a function of distance from the heart. Each line 

represents an individual vessel. Only vessels belonging to the CoW and beyond are shown. 

The pulsatility decreases as a function of distance from the heart for most vessels. Pulse 

pressure amplification is observed at the brachial arteries. Figure 3a shows the volume flow 

rate, pressure and radius of three vessels at different sizes, one large, one intermediate and one 

small artery. The chosen vessels were the right common carotid artery, the right middle cerebral 

artery and one outlet vessel belonging to the right middle cerebral vasculature. The figure 

shows that the volume flow rate profile only changes in magnitude as the flow is split at every 

bifurcation. The pressure profile changes as the higher frequencies are damped. The vessel 

radius changes depending on the pressure and the properties of the vessel. The radii of the small 

cerebral arteries do not change much. The cerebral vessels are much stiffer than the large 

arteries and the pressure is lower further away from the heart, see Figure 3b (34). 

Figure 3c shows the velocity PI in the cerebral vasculature. Figure 3d shows the pressure and 

velocity PIs as function of distance from the heart. Measurements of the pulsatility index of the 

right middle cerebral artery are possible through transcranial Doppler ultrasound. The PI 

measured is often the velocity PI also known as Gosling’s pulsatility index (35).  PI is thought 

to reflect the downstream vascular resistance and changes in PI are associated with various 

diseases (36,37). 

Table 3 shows the pulsatility indexes for the middle cerebral artery. Comparing the values 

found to those in literature shows that the model overestimates the velocity PI (36,38,39).  

Stiffness of the vessels play an important role in the transmission of pulsatility through the 

vasculature (40). Obtaining patient-specific Young’s moduli for every vessel is difficult and 

can explain the overestimation of the velocity PI in the model. Pressure pulsatility index 

decreases more than the velocity pulsatility index as a function of distance from the heart. This 

is likely due to the dampening seen in the pressure profiles, see Figure 3a. This suggests that 

the pressure PI is a better measure of the downstream resistance than the velocity PI. 

Table 3: Velocity pulsatility index of the MCA. 

Origin Mean (SD) 

Model (default anatomy) 1.02 

Model with patient data 1.08 

(38) 0.754 (0.110) (Women) 

0.823 (0.154) (Male) 

(39) 0.74 (0.04) 

(36) 0.86 (0.18) 

 

The pulsatility decreases as the radius of the vessel decreases. see Figure 3c and 3d. High 

frequencies are effectively decreased in magnitude. The pressure pulsatility index shows that 

there are two types of behaviour. The first type is the pulse pressure amplification in the 
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brachial arteries. The second type is the slow decrease in pulsatility index as distance from the 

heart increases. Velocity pulsatility seems to reach a minimum at around one. Changes in 

volume flow rate become negligible on the timescale of tissue oxygenation and cell death. We 

therefore argue that we can approximate the volume flow rates at the pial surface as steady 

state flow. The mean volume flow rate over the region does not depend on details of the 

vasculature due to conservation of mass. The steady state only changes due to a major event in 

the vasculature such as a stroke. We therefore map the mean volume flow rate directly from 

the vessel outlet to its perfusion territory. One could go further and replace the entire blood 

flow model with a steady state resistance model.  

Tables 3 and 4 show the mean PI and mean volume flow rates for the model with and without 

patient segmentations used to personalize the model. The configuration of the CoW and the 

stroke itself will change the outcome such that we cannot compare the model output to values 

from literature for healthy patients. Note that the model is not calibrated nor fitted to match the 

reference values. The pulsatility indices when compared to the refence value do seem to be too 

high but without either calibration nor sufficient patient data, this is unsurprisingly. Getting 

correlated high-quality data for stroke patients is difficult. This is something that we hope to 

address in future work. 

Table 4: Volumetric flow rates (mL/min) per vessel for the model with and without patient 

segmentations. 

Vessel Model (patient) Model (default) 

Ascending Aorta 4.20E+03 4.20E+03 

Aortic Arch I 3.53E+03 3.54E+03 

Brachiocephalic 6.76E+02 6.61E+02 

Aortic Arch II 3.15E+03 3.19E+03 

L. common 

carotid 

3.80E+02 3.47E+02 

R. common 

carotid 

3.67E+02 3.57E+02 

R. subclavian 3.05E+02 3.03E+02 

Thoracic aorta 2.84E+03 2.89E+03 

L. subclavian 3.05E+02 3.03E+02 

L ext. carotid 8.64E+01 1.47E+02 

L int. carotid I 2.92E+02 1.98E+02 

R int. carotid I 2.80E+02 2.09E+02 

R ext. carotid 8.71E+01 1.48E+02 

R. vertebral 8.82E+01 8.20E+01 

R. brachial 2.17E+02 2.21E+02 

L. brachial 2.17E+02 2.21E+02 

L. vertebral 8.83E+01 8.21E+01 

L. PCoA -8.35E+00 1.30E+01 

R. PCoA 5.65E+01 1.37E+01 

Basilar I 1.50E+02 1.16E+02 

L. MCA 1.93E+02 1.22E+02 

R. MCA 1.35E+02 1.25E+02 

L. ACA, A1 1.08E+02 6.24E+01 
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R. ACA, A1 8.95E+01 6.92E+01 

L. PCA, P1 -6.73E+01 -3.48E+01 

R. PCA, P1 -5.65E+01 -3.27E+01 

L. ACA, A2 1.08E+02 6.30E+01 

R. ACA, A2 8.92E+01 6.96E+01 

ACoA - 1.28E-01 

L. PCA, P2 5.89E+01 4.82E+01 

R. PCA, P2 1.13E+02 4.69E+01 

R. SCA 1.20E+01 2.22E+01 

L. SCA 1.20E+01 2.22E+01 

R. AICA 6.46E+00 1.18E+01 

L. AICA 6.46E+00 1.18E+01 

Basilar II 1.50E+02 1.15E+02 

Pontine I 2.06E-01 3.76E-01 

Pontine II 2.05E-01 3.74E-01 

Pontine III 2.04E-01 3.73E-01 

Pontine IV 2.03E-01 3.72E-01 

Pontine V 2.02E-01 3.71E-01 

Pontine VI 2.02E-01 3.70E-01 

Pontine VII 2.06E-01 3.76E-01 

Pontine VIII 2.05E-01 3.74E-01 

Pontine IX 2.04E-01 3.73E-01 

Pontine X 2.03E-01 3.72E-01 

Pontine XI 2.02E-01 3.71E-01 

Pontine XII 2.02E-01 3.70E-01 

Basilar III 1.49E+02 1.14E+02 

Basilar IV -1.49E+02 -1.14E+02 

Basilar V -1.48E+02 -1.13E+02 

R. PICA 6.56E+00 1.20E+01 

L. PICA 6.56E+00 1.20E+01 

R. vertebral II 8.02E+01 6.89E+01 

L. vertebral II 8.03E+01 6.90E+01 

 

The coupling algorithm is able to consistently map the outlets of the blood flow model to the 

pial surface. The coupling method works with any pial surface mesh and a higher resolution 

mesh will also increase the resolution of the perfusion territories. The choice of BraVa subject 

does not affect the blood flow variables before the CoW with the coefficient of variation not 

exceeding 0.005 for any vessel in Table 1. However, there is variation in the location and size 

of the perfusion territories. This is likely to reflect the individuality of the cerebral vasculature. 

Computation times for the 1-D blood flow simulation are on the order of 10 minutes while the 

coupling algorithm takes significantly more time and are on the order of 60 minutes. 

Computations are done on a standard desktop computer with an Intel core i7-7700k running at 

4.2GHz with 16GB RAM.   

Figure 4a shows the mapping of the pial surface based on the major artery from which the 

vessels originate. To date, only the perfusion territories for the major cerebral arteries are well-
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established (14,41). The major cerebral perfusion territories are enforced with the use of 

VEASL data. This is done to try to limit the error between the expected area and the area on 

the surface mesh. The surface mesh does not capture all the complex folding of the brain and 

a mismatch is expected. This lack of resolution is a serious limitation of the coupling algorithm. 

A downside of this is that the fractional areas, equation 15, are only strictly valid within each 

region, see Figure 5.  

 

 

Figure 4: (a) The pial surface mapped by the coupling algorithm. The major region id for each 

triangle of the pial surface mesh is shown. Note that this result is enforced by the algorithm.  

(b) The pial surface mapped by the coupling algorithm. Each triangle is coloured based on the 

cluster id. Each coloured region corresponds to one outlet of the 1-D blood flow model. Each 

cluster is one connected region and lies within its major cerebral vessel domain as shown in 

figure (a). 

 

 

a

 

b 
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Figure 5: Relationships between perfusion territories within the same major region. (a) shows 

the fraction between cubed radii at the outlet and area on the pial surface. (b) shows the fraction 

between cubed radii at the outlet and the mean volume flow rate. (c) shows the fraction between 

the number of triangles of two clusters and their area. All figures show linear relationships. 

The coupling algorithm essentially maps the pial surface to the nearest vessel. The main benefit 

from the coupling algorithm is that it ensures that the perfusion territories are sized correctly, 

see Figure 5. Shown in Figure 5 are ratios between various variables within regions of the brain. 

Every outlet is compared to every other outlet in a specific region of the brain. The ratios 

provide a way to compare the results of the model to the model assumptions. Figure 5a shows 

the relationship between the cubic radius and the area on the pial surface of the vessel outlets. 

Figure 5b shows the relationship between cubic radius and mean volume flow rates, see 

equation 14. Figure 5c shows the relation between the number of triangles and area on the 

surface mesh. The ratios display a linear relationship and any deviation from the linear 

relationship represents a deviation from the model assumptions. 

 

a

 

b 

c 
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The coupling method is graph based and works with any geometry and distance metric. 

Different scaling laws can be applied by changing the calculation of fractional area. A simple 

alternative to the coupling algorithm would be to map the surface to the nearest outlet. 

However, this can cause problems when some outlets are mapped to large areas of the surface 

and other are not mapped at all. The effect of different sized radii at the ends to the vessels 

cannot be ignored. Another way to estimate perfusion territories is based on calculating 

streamlines (42). However, this method is computationally expensive and can run into issues 

with large complicated geometries. 

 

 

 

Figure 6: (a) Mean blood flow velocity at the pial surface for a healthy patient. The mean 

volume flowrate divided by the cluster area for each vessel outlet to the pial surface is shown. 

All values are within one order of magnitude of each other. (b) Volume flow rate on the mesh 

for a healthy patient. The volume flow rate at the outlet of the vessel is mapped to its cluster 

on the mesh. There are large differences between clusters as the outlet radii can differ 

significantly. (c) Flow velocity at the pial surface for a patient with a stroke. There is a clot in 

the right middle cerebral artery. Pressure after the clot is equal to that of the venous system and 

d 

b a 

c 
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flow is zero. (d) Volume flow rate at the pial surface for a patient with a stroke. Any vessel 

originating from the right middle cerebral artery has zero flow and their perfusion territories 

receive no blood.   

The mapping of the pial surface to the outlets of the 1-D blood flow model is shown in Figure 

4b. The volume flow rate at the outlets of the 1-D blood flow model is distributed evenly across 

its perfusion territory. Figure 6a shows the mean blood flow velocity at the pial surface and 

Figure 6b shows the mean volume blood flow rate at the pial surface. There are some 

differences in flow rate at the pial surface but all flow rates are within one order of magnitude. 

These differences are largely due to deviations from the assumed proportionality between 

radius and volume flow rate, equation 14 and Figure 5b. The surface mesh also does not capture 

all the complexity of the human brain and affects the distribution of the flow across the pial 

surface, Figures 5a and 5c. Improving the quality of the surface mesh and improving the surface 

mapping as well as validation of the mapping will be addressed in future work. 

A clot can be modelled by introducing a reflective boundary condition at the boundary of the 

flow. This is achieved by enforcing a zero-pressure gradient, resulting in zero flow through the 

clot. Figure 6c shows the effect of a clot in the right middle cerebral artery on the velocity of 

flow at the pial surface. Figure 6d shows the effect of the same clot on the volume flow rate to 

the pial surface. The figures show that downstream of the clot there is no flow, leading to 

regions on the pial surface that lack flow. These are the areas where an infarct will start to form.  

The framework presented here can be used to model blood flow to organs such as the brain. In 

addition, the mapping algorithm can be used to estimate perfusion territories for any organ as 

along as the appropriate distance metric is used. It is important to capture enough of the 

vasculature to be able to accurate predict pressure and flow rates. Patient-specific simulations 

are a challenge from a modelling as well as a data perspective. Obtaining correlated parameters 

as well as patient-specific segmentations is a major challenge for creating patient-specific 

simulations. 

6 Conclusion 
In silico trials can dramatically improve the process of development of medical devices, drugs 

and treatments. IST can reduce the cost and duration of running a trial by reducing the need for 

patients and speeding up testing. The INSIST consortium (43) aims to create an in silico trial 

for treatment of acute ischaemic stroke. The trial will include models of the patient population, 

arterial blood flow, tissue perfusion, metabolism, thrombosis and thrombolysis and 

thrombectomy. Here the arterial blood flow model and a method for estimating perfusion 

territories is presented. is to a tissue perfusion model for patient-specific simulations is 

presented. Image based patient-specific data on the anatomy of the circle of Willis is combined 

with literature data and models for vessel anatomy not visible in the images to create an 

extended model for each patient. An acute ischaemic stroke can be modelled as the blockage 

of flow at any point in the vasculature. Modelling stroke and predicting infarct volume requires 

the coupling of multiple models on different scales. A method to couple patient-specific blood 

flow models to a tissue perfusion model is presented. Blood flow to the pial surface can be 

approximated as steady if we accept a small error due to the loss of the time-dependent 

behaviour. Additional work remains, however, to be done on the incorporation of feedback 

between the blood flow model and the tissue perfusion model. 
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7 Data, code and materials 
Patient-specific data is not available due to privacy regulations. The BraVa dataset is freely 

available from http://cng.gmu.edu/brava. Code and other materials are included as 

supplementary material. 
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