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ic stroke (AIS) appears when a blood clot blocks the blood
al artery. Intra-arterial thrombectomy, a mini-invasive pro-
n stent technology, is a mechanical available treatment to
and restore the blood circulation. After stent deployment,
in the stent struts, is pulled along with the stent towards

eter. Recent clinical trials have confirmed the effectiveness
echanical thrombectomy. However, the procedure requires
tion. The aim of this study is the development of a numeri-
t-based model of the thrombectomy procedure. In vitro
ests are performed in different vessel geometries and one
ach test is carried out to verify the accuracy and reliability
numerical model. The results of the simulations confirm

the model to replicate all the experimental setups. Clot’s
fields from the numerical analysis, which vary depending
c features of the vessel, could be used to evaluate the poss-
on of the clot during the procedure. The proposed in vitro/
ison aims at assessing the applicability of the numerical
providing validation evidence for the specific in vivo
utcomes prediction.
ic stroke (AIS) occurs when an artery that supplies blood to
ed by a blood clot (thrombus), which is a solidified mass of
ets, fibrin and other blood components occurring as a result
ion. Rarely, occlusive clots may also consist of non-thrombus
as fat emboli, tumour tissue, calcifications and the like. In the
ses, the clot is formed elsewhere and embolized to the vessel
ludes, although in situ occlusive thrombi also occur. Red
d cell (RBC) dominant, are understood to form where the
w and the fibrin network entraps the RBCs, while white
minant, are generated under high shear flow and inflamma-
1]. Mechanical properties of blood clot strongly depend on
ion [1]. Common origins of embolic thrombi are the heart,
ques, or from vessel wall dissections.
e location of the intracranial occlusion must be done in a fast
to ensure an appropriate selection of treatment and its speedy
Published by the Royal Society. All rights reserved.
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delivery [2]. Treatment of AIS is aimed at restoring blood
flow in the affected cerebral arteries as quickly as possible.
Time is crucial in stroke-2 million neurons are lost every
second without reperfusion [3]. The main diagnostic imaging
techniques used to identify the clot location are computed
tomography (CT) and magnetic resonance imaging (MRI).

There are currently twomain therapies to treat an ischaemic
stroke: (i) medical therapy using thrombolytic agents (thrombo-
lysis) and (ii) interventional therapy to remove the clot using
mechanical thrombectomy. The latter being indicated for
large vessel occlusions of the neurovasculature. Thrombolysis
became available recently and involves the administration of
tissue plasminogen activator 3–4.5 h after the onset of a
stroke. Most recently, intra-arterial mechanical thrombectomy
has emerged as a widespread clinical intervention technique
in the treatment of stroke [4]. Currently, a combined approach
of thrombolysis and mechanical thrombectomy is recommen-
ded for the treatment of AIS involving large vessel occlusion.
Mechanical thrombectomy interventions are carried out with
the aid of angiography to ensure the correct positioning of the
devices relative to the occluded vessel.

Thrombectomy device design has two classifications
based on their mode of action: (i) aspiration catheters and
(ii) stent-retrievers. Aspiration catheters may be used without
stent-retrievers; however, stent-retriever use usually includes
some element of aspiration, either through a guide catheter
placed in the extracranial internal carotid artery (ICA) or

and vessel wall damage [15,16]. Procedural success also greatly
depends on vascular geometry (tortuosity), clot characteristics
or in cases involving atherosclerotic stenosis [6].

To date, a limited number of in vitro and in silico studies
on the thrombectomy procedure have been reported. In vitro
studies have investigated the mechanical behaviour and
functioning of devices [17] and clots [18], and the stent–clot
interaction [19,20]. In the few published in silico studies
[21,22], the procedure was modelled as an electric circuit
analogue and the clot as a spring-damper system, ignoring
the mechanical nature of the stent–clot interaction.

In this regard, the increasing fascination of performing ‘vir-
tual’ treatment in ‘virtual’ patients [23] makes necessary the
development of accurate in silico models of the thrombectomy
procedure. An in silico clinical trials of AIS incorporating a
robust in silico thrombectomy model would enable evaluation
of various hypotheses on the effectiveness of thrombectomy.
In silico thrombectomy models in numerous vessel geometries
and with different clot characteristics would allow rapid
the evaluation of the feasibility of different thrombectomy
treatment approaches for specific patients, and patient popu-
lations, resulting in the faster and safer introduction of new
treatments or devices.

In this context, the objective of the current study is to
develop an in silico finite element model of the thrombectomy
procedure and to demonstrate the ability of the model to
replicate experimental thrombectomy tests using commercial
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using a distal access catheter which can be placed close to
the occlusion in smaller intracranial vessels. The superiority
of one approach over the other is an ongoing subject of
debate among neurointerventionalists [5–7]. Effectiveness of
the thrombectomy approach taken is measured in terms
of speed of revascularization, reperfusion grade, patient
outcome, ease-of-use and cost of the procedure. The revascu-
larization of the affected vessels is strongly associated with
improved clinical outcomes for patients [8].

Stent-retrievers rely on the mechanical removal of the
thrombus by means of a nickel-titanium (NiTi) self-expandable
stent at the end of a flexible wire, delivered in a crimped
configuration in a microcatheter and positioned across the
thrombus. Once in position, the stent-retriever is deployed
by withdrawing the microcatheter (even at this stage, the
expanded stent may restore the blood flow by compressing
the clot between the stent-retriever and the arterial wall).
After deploying the stent-retriever, the clot, trapped in the
stent struts, is pulled along with the stent towards a receiving
catheter. In many cases, this operation is performed under
arrested flow conditions achieved by a balloon inflated in a
guide catheter positioned at the ICA at the skull base.
A number of stents-retriever device designs are currently
being used in clinical practices [9], and a number of clinical
trials are currently ongoing [8,10–12]. In this regard, the seminal
MRCLEAN clinical trial [13], amulticentre randomized clinical
trial of endovascular treatment (EVT) for AIS in the Nether-
lands, confirmed the effectiveness and safety of stent-retriever
thrombectomy devices and demonstrated their improved out-
come when combined with best medical therapy compared to

thrombolysis alone.
However, despite its increasing clinical application,
thrombectomy may result in some adverse outcomes, such as
thrombus embolization to distal vessels caused by disruption
of the clot during crossing, deployment or retrieval [14], embo-
lization of clot to new vascular territories, hemorrhagic events
rsfs20190123—2/11/20—23:28–Copy Edited by: Not Mentioned
stents-retriever and clot analogues. To the best of our
knowledge, this is the first finite-element model of the
thrombectomy procedure. In vitro tests are also performed to
verify the accuracy and reliability of the numerical models.
The proposed in vitro/in silico comparison aims at assessing
the applicability of the numerical model and at providing
validation evidence for the specific in vivo thrombectomy
outcomes prediction, which constitutes the ultimate Context
of Use (COU). In particular, finite-element models of
the stent-retriever and the clot are developed and their
mechanical behaviour is calibrated with experimental tensile
and compression tests; in vitro bench-top tests in different
cerebral-like vessel geometries (idealized and anatomically
based) are performed—and a computational simulation of
each in vitro test is implementedusing the in silico thrombectomy
modelling framework.

2. Method
2.1. Stent-Retriever model
The EmboTrap II (CERENOVUS, Galway, Ireland) is a NiTi
stent-retriever with a dual-layer design (figure 1a): the outer
stent cage has large openings aimed at trapping the clot, while
articulating leaflets maintain the contact with the arterial wall
during retrieval, the inner channel formed by a closed-cell stent
is aimed at trapping captured clot within the stent-retriever and
restoring the blood flow through the clot upon deployment [24].
The device was approved for the use in EU in late 2013 under
the CE mark. The CAD model (5 mm outer diameter and 33 mm
length) was analysed by means of ANSA Pre Processor v19.0
(BETA CAE System, Switzerland) to extract the centreline of the
frames (figure 1b). The resulting wire model was discretized
with 4,353 Hughes-Liu beam elements with a rectangular cross
section and average length of 0.2 mm, following a rigorous mesh
size sensitivity analysis. In particular, three different discretiza-
tions with an average element size of 0.4 mm, 0.2 mm and



0.1 mm were considered, with the resultant force and the axial
stresses on selected elements in the central part of the device
used as monitored variables for the convergence analysis. The
difference in the monitored variables between the 0.2 mm and

using a custom-built parallel plate experimental (figure 2b).
Clots with a composition intermediate between red and white
clots (ca. 20% RBC) were subjected to confined compression up
to 80% nominal compressive strain at an applied strain rate of
10% s−1. The compressibility of the blood clot was also investi-

(a) (b) (c)

(e)

(d)

in silico
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Figure 1. (a) EmboTrap II device and (b) its finite-element model, discretized with beam elements; (c) the stent section acquired with the confocal laser scanning
microscope; (d ) uniaxial tensile test and (e) the resultant force-displacement curve (dotted blue line), compared with the curve from the in silico model (solid red line).
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the 0.1 mm discretization was less than 3% during the crimping
step of the simulations. The stent’s cross sections were measured
with a confocal laser scanningmicroscope (LEXT-OLS4100, Olym-
pus) (figure 1c). A self-penalty hard contact between the struts of
the stent was modelled in order to prevent inter-penetration of
the inner parts of the retriever during the simulations.

The NiTi material parameters, provided by CERENOVUS
(data not shown), were verified through a numerical-experimen-
tal coupling [25]: the stent was subjected to a uniaxial tensile test
at an applied displacement rate of 0.05 mm min−1 until its length
is extended by 4.5 mm, in a temperature-controlled chamber
with air at 37.0 ± 0.1°C (EnduraTEC ELF 3200, BOSE) (figure 1d ).
The experiment was then computationally simulated (figure 1e)
and the NiTi material was modelled using the shape memory

material constitutive formulation available in the commercial

finite-element solver LS-DYNA 971 Release 11.0 (LSTC,
Livermore, CA, USA) [26].

Crimping simulations of the device in a microcatheter with
an inner diameter of 0.5 mm followed by unconstrained release
were carried out to verify the crimping and release kinematic
of the device. These simulations were used to determine the opti-
mal system damping and mass scaling [27]. Internal, kinematic
and dissipative energies were compared in order to guarantee
quasi-static conditions during the simulation i.e. a kinetic to
internal energy ratio of less than 2%. The finite-element simu-
lations were performed on 16 CPUs of an Intel Xeon64 with
64 GB of RAM memory using the commercial finite-element
solver LS-DYNA 971 Release 11.0 (LSTC, Livermore, CA, USA).

2.2. Clot model
Clots analogues were obtained from venous whole ovine blood
using a customized protocol [28,29] (figure 2a). Unconfined com-
pression tests of synthetic clots in 0.9% saline were performed
rsfs20190123—2/11/20—23:28–Copy Edited by: Not Mentioned
gated by the processing of the images taken at different
deformations during the compression test. The initial defor-
mation of the clot at the start of the test leads to the calibration
of a Poisson’s ratio of 0.3.

The compression test was numerically reproduced using a
simplified quasi-hyperelastic foam model defined by a single
uniaxial load curve and an assumed Poisson’s ratio [30]. The
term quasi is used because there is really no strain energy func-
tion for determining the stresses. In this regard, the stress
response mimics the gradient of the classical Hill-Ogden strain
energy potential which for the case of a foam reads

tEii ¼ f (li)� f J�
n

1�2n
� �

,

where tEii are the principal components of the Kirchhoff stress, ν is
the Poisson’s ratio, li the principal stretches, with J ¼ l1l2l3 the
relative volume change, and f(:) a function determined directly
from uniaxial test data as [30]

f(l) ¼ lg(l)þ l�ng(l�n)þ � � � þ lð�nÞn g(lð�nÞn ),

where t ¼ g(l) corresponds to the experimental uniaxial curve.
The formulation does not require an analytical expression for
f (:); this function consists on tabulated values of the principal
stretch ratios and the input Poisson’s ratio. The tabulated
values are determined by LS-DYNA at the beginning of the com-
putation in such a way that supplied data from uniaxial tension
and compression tests are fitted within an arbitrarily small error,
whereas linear interpolation is used to approximate the function
between tabulated values. Figure 2c shows the performance of
the model to replicate the unconfined compression tests.



2.3. In vitro thrombectomy tests
Three different functional bench tests were designed: (i) a glass
U-bent vessel; (ii) a silicone funnel-shaped vessel and (iii) a
patient-like three-dimensional-printed silicone vascular branch.
Vessel models were fabricated with physiological dimensions in
order to realistically replicate the thrombectomy procedure. Clots
with the same composition (ca. 20%RBC) but different sizes were
used. Figure 3 shows the dimensions of the different vessel models
and clots considered in the study. The experiments were carried
out with a stationary flow of saline solution heated at 37°C and

The simulation of the thrombectomy procedure consisted of
four steps:

(i) Stent crimping/catheter tracking—the stent-retriever is
crimped in a 0.5 mm diameter rigid straight catheter in
1 s. A hard penalty contact is defined between the stent
and the catheter; at the same time, the clot is deformed
and pushed against the vesselwall by the catheter. Friction-
less soft penalty contact is defined between the clot and the
catheter, whereas a rough soft penalty contact is defined

nominal strain (/)

–1(c)

(a) (b)

in vitro

in silico

0
0

–10

–20

–30

–40

–50

–60

–70

–80
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s 

(k
Pa

)

Figure 2. (a) Clots analogues from venous whole ovine blood; (b) unconfined compression test in saline solution; (c) the measured nominal stress–strain curve with
standard deviation (dotted red line), compared with the curve from the in silico model (solid blue line).
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each procedure was video recorded. Each test was performed
three times in order to assure the repeatability of the outcomes.

2.4. In silico thrombectomy tests
Different clot model geometries were generated in accordance
with the dimensions of the tested clot analogues. Clot model
geometries were discretized with tetrahedral elements with an
average size of 0.2 mm. The mesh size for the clot was chosen
to be similar to that of the stent to achieve optimal simulation
of the contact between the stent and the clot. A mass pro-
portional damping of 10 s−1 was adopted for the clot in order
to achieve stability without excessively constraining the maxi-
mum time-step [27]. The CAD models of the glass and silicone
vessels were discretized with triangular rigid elements. The
clots were positioned in the vessels at the same location as the
in vitro tests. A selective mass scaling was adapted in order to
have a constant time-step of 5 × 10−7 s.

The finite-element models were setup in ANSA Pre Processor
v19.0 (BETACAE System, Switzerland) and the simulations were
performed on 40 CPUs of an Intel Xeon64 with 256 GB of RAM
memory using the commercial finite-element solver LS-DYNA.
rsfs20190123—2/11/20—23:29–Copy Edited by: Not Mentioned
between the clot and the vessel wall, with a friction coeffi-
cient of 0.1 in the glass vessel and of 0.2 in the silicone
vessels [31].

(ii) Stent tracking—the crimped stent is positioned at the
location of the clot by removing it along the centreline
of the guide catheter at a velocity of 0.1 m s−1.

(iii) Deployment—the stent is released/unsheathed by sliding
the crimping catheter from the stent at a velocity of
0.1 m s−1. As the stent is released it comes into contact
with the clot; a soft penalty contact is defined between
the stent and the clot, whereas a hard contact is
implemented where the stent contacts the rigid vessel wall.

(iv) Retrieval—the clot trapped by the stent following release,
and the stent and trapped clot are then pulled at a velocity
of 0.05 m s−1 along the catheter’s centreline until an
aspiration catheter is reached.

3. Results
Simulation of the crimping of the device in the catheter
followed by an unconstrained release was carried out to
verify the crimping and release kinematics predicted by the



model. The stent model was successfully crimped in 1 s in a
0.5 mm—diameter catheter without distortion of the beam
elements, element inter-penetration or instability. In figure 4,

instead of local maximum values to avoid possible spikes
due to the contact of the clot with the stent or due to excessive
distortion of the mesh.

(a) (c)

(b)

12 mm

F = 3.5 mm

F ICA = 3.5 mm
F MCA-M1 = 2.6 mm
F MCA-M2 = 2.1 mmclot F = 2.5 mm

L = 8.5 mm

F = 8 mm F = 4 mm

60 mm

40 mm 40 mm
4 mm

90 mm
clot F = 3.5 mm L = 5 mm

clot F = 8 mm L = 9 mm

MCA-M1

MCA-M2
ICA

Figure 3. Geometry and dimensions of the three functional bench tests, (a) a glass U-bent vessel (b) a silicone funnel-shaped vessel and (c) a patient-like three-
dimensional-printed silicone vascular branch. Clots’ diameters and lengths are also pointed out (in red).

Figure 4. Comparison between the real (left panel) and the modelled (right panel) crimping phase of the device in the microcatheter with an inner diameter of
0.5 mm.
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the simulation of the crimping is compared against the actual
crimping of the Embo Trap II device. The unconstrained release
in 1 s was also successfully modelled, the stent recovered its
nominal open configurationwith no residual stresses or strains.
The quasi-static condition in this simulation was achieved, a
mass-weighted damping factor for the stent of 50 s−1 and a con-
stant time-step of 5 × 10−7 s with selective elementmass scaling
were identified as optimum parameters.

Thrombectomy in vitro tests were performed and numeri-
cally reproduced. Comparison in terms of the kinematics
(structure deformation) was performed, focusing in particular
on the clot’s position, deformation and motion. Evaluation
over time of the von Mises (VM) stresses and Green von
Mises (VM) strains, also known as Effective stress and strain
respectively, of the clot during all the steps of the simulations
was performed. Maximum stress and strain are reported as
the average of the 10 elements with the maximum value,
rsfs20190123—2/11/20—23:29–Copy Edited by: Not Mentioned
The first test was conducted in a glass U-bent vessel, with a
positive thrombectomy outcome. The model consisted of 48
655 finite elements and the simulation lasted 17 h. The clot,
trapped into the stent’s struts, was retrieved along the bend
of the vessel (figure 5-left panel). In this case, the simulation
successfully replicated the procedure (figure 5-right panel):
during the first step (stent crimping/catheter tracking) the
stent was crimped and the catheter, following the centreline
of the U-bent vessel, was positioned across the cot. At this
point (T1 in figure 6), the clot, pushed against the vessel wall,
reached a maximum VM stress of 0.6 kPa and a VM strain of
0.25. In the stent tracking phase, the crimped stent was posi-
tioned across the clot following the centreline of the catheter,
while nothing occurred on the clot, whose stress and strain
values remained stable. In the deployment step, the stent was
released by unsheathing the catheter. As the stent and the
clot enter in contact, the stress and strain values increased in



the clot increase dramatically. The maximum VM stress and
strain once the stent was completely released (T2 in figure 6)
were 36.3 kPa and 0.72, respectively. In the third and final
retrieval step, the clot is trapped between the inner and the
outer layer of the stent and was retrieved following the centre-
line of the catheter. During the retrieval phase, the maximum
effective stress and strain in the clot decreased as the retriever
pass the U-bent to further stabilize at a constant value as the
retriever reaches the straight part of the vessel. In this setting,

small vessel. Instead, the clot roll up in the place where the
larger vessel narrows (figure 7-left panel). The simulations,
again, successfully replicated the (figure 7-right panel) too.
After the first stent crimping/catheter tracking step (T1 in
figure 8), the clot was pushed against the vessel wall reaching
a maximum VM stress of 0.4 kPa and a VM strain of 0.23,
values that were maintained during the second step. During
the deployment step the stent went in contact with the clot,
increasing the maximum effective stress and strain values to

Figure 5. Comparison between the in vitro (left panel) and the in silico (right panel) thrombectomy test in the glass U-bent vessel. In both the results the clot,
trapped in the stent, is successfully retrieved until reaching the aspiration catheter.
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the maximum effective stress and strain in the clot resulted in
36.5 kPa and 0.78, respectively (figure 6). The second test was
conducted in a silicone funnel-shaped vessel, with a negative
thrombectomy outcome. The model consisted of 50 518 finite
elements and the simulation lasted 18 h. In this case, the clot
is not trapped within the retriever’s struts during the retrieval
phase and the retriever is unable to pull the clot through the
rsfs20190123—2/11/20—23:29–Copy Edited by: Not Mentioned
4.3 kPa and 0.45, respectively (T2 in figure 8). In the retrieval
step, the clot, due to the significantly larger vessel to retriever
diameter ratio that prevented an effective clot–stent interaction,
started to roll up preventing the retriever to pull the clot into a
smaller vessel. In this step, the continuous rolling of the
clot produced oscillating values of the effective stressed and
strains with peaks of 15.4 kPa and 0.61, respectively. The
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Figure 7. Comparison between the in vitro (left panel) and the in silico (right panel
the clot escaped from the stent by turning on itself.
third thrombectomy test was conducted in a patient-like three-
dimensional-printed silicone vascular branch, with a positive
outcome (figure 9-left panel). This last test is closer to the
in vivo thrombectomy procedure. From a numerical point of
view, the simulation was composed of the same four steps,
but the tortuosity of the vessel increased the overall complexity
rsfs20190123—2/11/20—23:29–Copy Edited by: Not Mentioned
of the solution. The model consisted of 144 760 finite elements
and the simulation lasted 26 h. This simulation demonstrates
the robustness of the thrombectomy numerical model as it suc-
cessfully replicated the experiments in terms of the successful
retrieval (figure 9-right panel). In the stent crimping/catheter
tracking step (T1 in figure 10), the clot was pushed against

) thrombectomy test in the silicone funnel-shaped vessel. In both the results,



the vessel wall reaching maximum effective stress of 8.0 kPa
and a maximum effective strain of 0.56, values that were main-
tained during the second step. During the deployment step the
stent went in contact with the clot, increasing the maximum
effective stress and strain values to 230 kPa and 1.02, respect-
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ively (T2 in figure 10). As evidenced by these results, during
the deployment phase of the retriever the clot undergoes
large deformations and the stresses reach values way superior
to those found in the other two experimental setups. During
the retrieval phase, the clot remained trapped in the stent’s
struts all the way along the vessel. In this case, the open archi-
tecture of the EmboTrap II stent helped the insertion of the clot
inside the stent struts [28]. During this final step, the effective
stress and strain reached a maximum value of 320 kPa and
1.6, respectively.

4. Discussion
In the in silico trial arena, numerical models of clinical
procedures are becoming an important tool. Even today,
numerical modelling plays a decisive role in research and the
development of biomedical products. In combination with
patient-specific models, in silico models can be used to build
in silico clinical trials in which virtual patients are treated
rsfs20190123—2/11/20—23:30–Copy Edited by: Not Mentioned
with virtual treatments. On this line, in 2018, the US Food &
Drug Administration (FDA) published the ASME V&V 40
technical standard ‘Assessing Credibility of Computational
Modeling through Verification and Validation: Application to
Medical Devices’ [32]. The credibility assessment begins with
the statement of the Context of Use (COU) of the proposed
numerical model. In this case, the COU, or in other words
the specific final goal of the model, is the prediction of the
thrombectomy outcomes in an ischaemic stroke patient, if the
clot will be removed or not, if, consequently, the blood flow
will be restored in time or not. In this view, ‘would favourable
validation results lead to trustworthy predictions in the Con-
text of Use (COU)?’ This is the question that the framework
proposed by Pathmanathan et al. [33] sets out. In biomedical
modelling, the issue to ‘strictly’ validate the numerical model
is demanding due to ethical and/or technological problems.
Proper validation of the thrombectomy procedure with
in vivomeasurements and images is at the moment impossible.
The generation of evidence to explain the differences between
the COU and the numerical model presented in this work is
the cornerstone of the so-called applicability analysis.

In the thrombectomy procedure (our COU), the stent is
crimped in a microcatheter with a diameter of 0.5 mm,
deployed at the location of the clot in a way that, once the
stent is released by unsheathing the catheter, it is in direct
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ses (VM) stress and Green von Mises (VM) strain values over time during the
e silicone funnel-shaped vessel. Von Mises stress contours on the clot in two
f the deployment step (time T2).



release and the retrieval phases. The finite-element models of
the most clinically used stents-retriever in different sizes will
be available, with an equivalent section derived from the
microscope observation and material model calibrated with
uniaxial tensile tests. The limited availability of Ni-Ti stents pre-
vented to perform a statistically significant experimental
campaign apt at the model validation. Additional experiments,
such as uniaxial, torsion and bending tests, should be per-
formed to achieve a better degree of confidence in the model
validation. Finite-element models of the clot with different
sizes and compositions [1], and material behaviour calibrated
with compression tests will be realized. The thrombectomy
simulation will be setup with the same steps described in this
work. The stent will be crimped in the 0.5 mm-diameter cath-
eter, deployed across the clot by following the centreline of
the catheter. It will be released by unsheathing the catheter,
and finally, pulled along the vessel following the catheter’s
centreline up to the location of the aspiration catheter.

The main differences between the in silico thrombectomy
procedure (COU) and the numerical model described in this
study are the assumptions that have been adopted, which
generate some limitations of the work. First, the vessel is here
considered rigid instead of deformablewith a nonlinear behav-
iour. In this study, the glass and silicon vessels of the in vitro
model can be reasonably modelled with rigid parts, an
assumption that in the COU model will be withdrawn.
Second, the finite element model of the device is based on
the discretization of the stent’s centreline into beam elements,
to which an equivalent section has been assigned. This
represents a simplificationwhichmay be a source of discrepan-
cies (in particular in terms of local strains). In addition, the
dual-layer structure of the EmboTrap II stent-retriever
introduces an additional difficulty to model the two parts
linked together. In the current model, the two layers have
been considered as a single part, contributing to stiffen the
overall axial response of the in-silico model with respect to
the actual device. Moreover, the strongly nonlinear constitutive
model, such as the super-elasticmaterial herein discussed, may
lead to an intensification of the hysteresis effect in the numeri-
cal model (figure 1e), which is attributable to those elements
experiencing higher strains. In the future, more efforts should
be paid in a more realistic reconstruction of details of the
stent geometry, in order to fully exploit the power of this com-

iour on the vessel wall could be investigated in future studies.
Moreover, if the thrombectomy procedure is preceded by

Figure 9. Comparison between the in vitro (left panel) and the in silico
(right panel) thrombectomy test in the silicone patient-like 3D-printed vas-
cular branch. In both the results the clot, trapped in the stent, is successfully
retrieved until reaching the aspiration catheter.
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contactwith the clot. The clot is pushed against the arterialwall
and it should be trapped by the stent struts. Finally, both the
stent and the clot are removed. However, the means of the
removal varies considerably. An ever-increasing list of variants
to the thrombectomy procedure is being reported. In some
instances, the stent-retriever is pulled to a receiving guide cath-
eter in the extracranial ICA, in other instances, a distal access
catheter is advanced to the site of the clot and stent-retriever
and they are withdrawn into the catheter at that point, in
other cases still, the SR is used to partially pull the clot into a
distally positioned catheter and the catheter, SR and clot are
removed en bloc in that configuration. In all cases, aspiration
through the receiving catheter is used to aid with clot capture.
In the clinical reality, different parameters could vary and affect
the outcomes: the choice of the stent-retriever design and size,
the patient-specific morphology of the artery branches and the
clot size, location and composition.

In accordancewith the clinical procedure, the finite-element
analysis of the COUmodels the crimping, the deployment, the
rsfs20190123—2/11/20—23:30–Copy Edited by: Not Mentioned
putational tool for the investigation of local quantities, such as
stress and strains. Third, the clot shape and material model are
defined from analogues instead of from ex vivo clots. However,
the methodology proposed by Duffy et al. [29] to replicate clot
analogues with diverse compositions is reproducible and clot
analogues, despite having a homogeneous composition, dupli-
cate efficaciously ex-vivo clots [18]. The clot is modelled with
homogeneous compressible hyperelasticmaterial, but different
aspects such as viscoelasticity, porosity and adhesion behav-
thrombolysis, the size and location of the clot, drug adminis-
tration time and drug dose can affect the clot mechanical
properties and, consequently, the prediction of the thrombect-
omy simulation. Fourth, in both the thrombectomy numerical
model (COU) and the numerical model described in this
work, there is no blood flow. In reality, even though the pro-
cedure is usually performed with a balloon which, before the
SR retraction, is inflated to arrest the antegrade flow [14],
there could be some secondary flow through the collateral
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which are impossible to obtain from in vivo or in vitro tests,
can be used once coupled with a fracture model to predict
the possibility of clot fragmentation, the most important com-
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the clot fibrin stretching during the stent release [28] and is
not considered in both the in silico thrombectomy procedure
(COU) and the numerical model described in this work.
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technique, which is generally considered
treatment for improving the stroke treatm
interesting issue is to use numerical m
understand the complications of the trea
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the treatments, such as the effect of the com
bolysis and stent-retriever thrombectomy
new, more effective devices. Conseque
room for improvement in thrombectomy
and the thrombectomy procedure. With
new stroke treatments, many new clinica
and expected. As such a great opportunity
numerical investigations exists to expedit
replace these resource-intensive trials.
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