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a b s t r a c t 

Materials such as elastomeric foams, lattices, and cellular solids are capable of undergoing large elastic 

volume changes. Although many hyperelastic constitutive formulations have been proposed for deviatoric 

(shape changing) behaviour, few variations exist for large deformation volumetric behaviour. The first 

section of this paper presents a critical analysis of current volumetric hyperelastic models and highlights 

their limitations for large volumetric strains. In the second section of the paper we propose three novel 

volumetric strain energy density functions, which: (1) are valid for large volumetric deformations, (2) of- 

fer separate control of the volumetric strain stiffening behaviour during shrinkage (volume reduction) and 

expansion (volume increase), and (3) provide precise control of non-monotonic volumetric strain stiffen- 

ing. To illustrate the ability of the novel formulations to capture complex volumetric material behaviour 

they are fitted and compared to a range of published experimental data. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Foams, lattices, and cellular materials are common in nature

and engineering applications ( Schaedler and Carter, 2016; Fleck N.

A. et al., 2010; Dunlop and Fratzl, 2013; Mihai L. Angela et al.,

2015 ). Given the large elastic volume changes these materials can

undergo ( Gibson et al., 1981 ), accurate descriptions of material

behaviour beyond the small strain domain is required. Such be-

haviour may include an asymmetric shrinkage-expansion response

in addition to a highly non-linear pressure-volume relationship. 

Hyperelastic continuum models offer a convenient means to

model the large strain mechanical behaviour of complex materials.

However, although the hyperelasticity literature is rich in terms of

variations in modelling of the deviatoric (shape changing) material

response, as evident from the many different formulations which

have been proposed (e.g. close to a hundred described in a recent

review ( Chagnon et al., 2015 )), few variations exist for modelling

the volumetric contribution (e.g. Bischoff et al., 2001; Storåkers,

1986; Ogden, 1972; Doll and Schweizerhof, 20 0 0 ). 

The goal of this study is to provide novel volumetric strain en-

ergy formulations which: (1) are valid for large volumetric defor-

mations, and (2) enable the separate control of volumetric strain-

dependent stiffening during shrinkage (volume reduction), and ex-

pansion (volume increase). 
∗ Corresponding author. 
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Accurate modelling of the volumetric behaviour of materials

ike soft foams and lattices is of interest since it is relevant to the

esign of support structures (see review Mills et al., 2003 ), such as

oam cushions and seats ( Savonnet et al., 2018; Kim et al., 2018;

riody et al., 2012; Cohen and Gefen, 2017 ), helmets ( Palta et al.,

018 ), and shoes and insoles ( Petre et al., 2006; Actis et al., 2008;

hassemi et al., 2015 ). Furthermore compliant lattices and foams

re also employed in the design of soft robotics ( Murray et al.,

015; Cheng et al., 2014; Schlagenhauf et al., 2018; Somm et al.,

019 ). Recent advances in material science include the develop-

ent of ceramic nanolattices ( Meza et al., 2014 ), mycelium-based

io-foams ( Islam et al., 2018 ), ultraporous sponges ( Mader et al.,

018 ) graphene foams and aerogels (e.g Pan et al., 2018; Shang

t al., 2018; Wu et al., 2015; Chandrasekaran et al., 2017 ) some

apable of recovering from 90% compression ( Hu et al., 2013 ). Fur-

hermore, accurate volumetric formulations are relevant to stroke

iomechanics research since blood clot contractions cause large

olume changes (e.g. possibly over 80% volume loss ( Tutwiler et al.,

016 )). 

Hyperelastic constitutive formulations have their origins in the

odelling of rubber ( Rivlin and Saunders, 1951; Treloar et al.,

976; Ogden, 1984; Boyce and Arruda, 20 0 0 ). Although rubber is

ost commonly modelled as incompressible (no volume change),

t does present with a non-linear pressure-volume response dur-

ng large deformation hydrostatic compression (20% volume re-

uction ( Boyce and Arruda, 20 0 0 )), and volumetric hyperelastic

ormulations capturing this behaviour have been proposed (e.g.

ischoff et al., 2001 ). These, as we will show here, are however

ot generally valid for very large hydrostatic compression. 

https://doi.org/10.1016/j.ijsolstr.2020.01.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2020.01.019&domain=pdf
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Hyperelasticity is also commonly used for soft tissues (see re-

iew Chagnon et al., 2015 ). However, like with rubbers, these are

ften assumed to be incompressible or nearly-incompressible. For

hese applications the volumetric contributions are commonly con-

idered largely as a simple penalty term to enforce (near) in-

ompressibility (e.g. Simo and Taylor, 1982; Weiss et al., 1996 ),

ather than a topic of detailed investigation. Consequently the for-

ulations used for these volumetric contributions are often not

alid for very large volume changes. For foams and highly com-

ressible materials the so called hyperfoam formulation ( Storåkers,

986; Hill, 1979; Blatz and Ko, 1962 )) is common (see for instance

 Fernandes et al., 2015; Petre et al., 2006; Liu and Scanlon, 2003;

u et al., 2013; Fazekas and Goda, 2018; Briody et al., 2012 )). How-

ver, we show here it is not robustly designed for very large vol-

me changes. 

The first part of this study is a critical analysis of current vol-

metric hyperelastic formulations, and presents a discussion of

heir limitations for large volumetric deformations and non-linear

pplications. In the second part of this study three novel volu-

etric strain energy formulations are presented (and several vari-

tions in the appendix) which offer validity for large volumet-

ic strains as well as flexibility for experimental fitting of com-

lex behaviour for both the shrinkage and expansion domain. In

ddition, the third formulation was expanded to include non-

onotonic volumetric strain stiffening (e.g. potentially leading to

 plateau in the observed stress) as seen for crushable foams and

ellular materials. Finally, the models are compared to experimen-

al data for neoprene rubber foam ( Bardy et al., 2005 ), flexible

pen-cell polyurethane cushioning foam ( Petre et al., 2006 ), natu-

al cork ( Dart et al., 1947 ), and rigid closed-cell polyurethane foam

 Maji et al., 1995 ). 

. Theoretical background and rationale 

In hyperelasticity the constitutive behaviour, i.e. the material’s

tress-strain behaviour, is derived from a formulated strain energy

ensity (SED) function (for a more detailed discussion of these

oncepts the reader is referred to established text-books on the

ubject ( Holzapfel, 20 0 0 ) and ( Ogden, 1984 )). In the case of un-

oupled formulations the strain energy consists of additive devia-

oric (shape changing) �de v ( ̃ C ) and volumetric (volume changing)

vol ( J ) contributions: 

( ̃  C , J) = �de v ( ̃  C ) + �v ol (J) (1)

ere ˜ C and J represent the deviatoric right Cauchy-Green tensor

nd the volume ratio (or Jacobian), respectively. The Cauchy stress

an be written: 

= σde v + σh I (2) 

here σde v is the deviatoric stress tensor, σ h is the scalar hydro-

tatic stress, and I is the identity tensor. σ h is given as 

h = 

1 

3 

tr ( σ) = −p (3)

here p = −σh is commonly referred to as the pressure. For an un-

oupled formulation, σ h is determined from the volumetric com-

onent of the strain energy density, such that 

h = 

∂ �v ol (J) 

∂ J 
(4) 

his paper focuses on the analysis and development of volumet-

ic strain energy density formulations for large volumetric defor-

ations. We consider both volume reduction ( J < 1) and vol-

me increase ( J > 1), referred to as shrinkage and expansion ,

espectively. 
Although many formulations have been proposed for deviatoric

train energy contributions �dev (see for instance the review ar-

icle ( Chagnon et al., 2015 )), relatively few formulations have been

roposed for the volumetric strain energy contributions �vol ( J ) (for

 more detailed discussion of volumetric strain energy formula-

ions the reader is referred to the surveys by Doll and Schweiz-

rhof (20 0 0) and Horgan and Murphy (20 09) ). Moreover, volu-

etric components of hyperelastic models are not typically sub-

ected to rigorous analysis in order to ensure that physically realis-

ic behaviour for large volume changes is maintained. The study of

oll and Schweizerhof (20 0 0) establishes 9 criteria (summarised

s I - IX in Table 1 ) that should be satisfied in order to ensure

hysically realistic material behavior during expansion and shrink-

ge. Here we add a tenth ( X in Table 1 ), namely: the volumet-

ic component of a hyperelastic model should be capable of pre-

isely describing strain stiffening for all values of J (shrinkage and

xpansion). 

.1. Structure of this paper 

The current paper is structured as follows. 

In Section 3 we analyze the capability of four existing models

o satisfy the criteria set out in Table 1 : 

• In Section 3.1 commonly implemented single parameter

models are analysed; 

• In Section 3.2 the formulation by Bischoff et al. (2001) for

hydrostatic compression of rubber is analysed; 

• In Section 3.3 we analyse the modified Ogden formulation

( Ogden, 1972; Ehlers and Eipper, 1998 ), a simplified form of

which has been implemented in ABAQUS® (2018, Dassault

Systèmes Simulia Corp.); 

• In Section 3.4 we analyse the Ogden-Hill hyperfoam for-

mulation ( Storåkers, 1986 ), which has been implemented in

ABAQUS®, for highly compressible elastomers; 

• In Section 3.5 we analyze a model by Doll and Schweizer-

hof (20 0 0) . 

• In Section 3.6 we analyze the model by

Montella et al. (2016) . 

In Section 4 we propose three novel formulations that improve

pon existing formulations in terms of the criteria outlined in

able 1 : 

• In Section 4.1 we expand the single parameter model (of

Eq. (6) ) to fulfil all criteria of Table 1 , and to provide inde-

pendent control of strain stiffening in shrinkage and expan-

sion; 

• In Section 4.2 we present a formulation that facilitates

precise prescription of ”lock-up” strains in expansion and

shrinkage; 

• In Section 4.3 we expand the model presented in

Section 4.2 to also capture non-monotonic strain stiffening

(typically observed in elastomeric foams). 

This paper focuses on volumetric strain energy density formula-

ions for large volumetric deformations. Properties of several com-

only used forms are discussed and three novel formulations are

roposed. Although the arguments are most readily presented us-

ng uncoupled formulations, they can be extended to coupled for-

ulations where the effective volumetric response can also be sep-

rately identified. 

All visualizations presented here were created based on the

ree and open source MATLAB® (R2019b, The MathWorks Inc.,

atick, MA, USA) toolbox GIBBON ( https://www.gibboncode.org ,

 Moerman, 2018; Moerman et al., 2013 )). Readers interested in ex-

loring MATLAB® implementations, and associated visualizations, 

https://www.gibboncode.org


476 K.M. Moerman, B. Fereidoonnezhad and J.P. McGarry / International Journal of Solids and Structures 193–194 (2020) 474–491 

Table 1 

Physical constraints and criteria for �vol ( J ). 

id Description Form 

I Zero SED in reference state �v ol (J = 1) = 0 

II Zero hydrostatic stress in reference state σh (J = 1) = 0 

III Positive strain energy density �vol ( J � = 1) > 0 

IV Consistent with linear elasticity d 2 ψ v ol (J=1) 
dJ 2 

= κ

V SED approaches ∞ if J approaches 0 lim J→ 0 �v ol (J) = ∞ 

VI Hydrostatic stress approaches −∞ if J approaches 0 lim J→ 0 σh (J) = −∞ 

VII SED approaches ∞ if J approaches ∞ lim J→∞ �v ol (J) = ∞ 

VIII Hydrostatic stress approaches ∞ if J approaches ∞ lim J→∞ σh (J) = ∞ 

IX Tangent modulus > 0 (polyconvexity) d 2 ψ v ol (J) 
dJ 2 

≥ 0 

X Control of strain stiffening for all J 
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of all discussed formulations presented here, may explore the fol-

lowing demo which was added to GIBBON as part of this study:

DEMO_volumetric_SED_eval.m . 

3. Review and critical analysis of current volumetric SED 

formulations 

3.1. Common single parameter volumetric SED formulations 

Two commonly used forms for �vol ( J ), in particular for uncou-

pled formulations, are (e.g. Hencky, 1933 ): 

�v ol (J) = 

κ

2 

ln (J) 2 (5)

and (e.g. Sussman and Bathe, 1987; Simo, 1988 ): 

�v ol (J) = 

κ

2 

(J − 1) 2 (6)

These are featured in many finite element implementations

such as the open source package FEBio ( Maas et al., 2012 ) and the

proprietary software ABAQUS®. These formulations have largely

been used to model materials that are assumed to be nearly in-

compressible (such as rubbers and soft tissues), for which J ≈ 1.

The motivation for these formulations stems largely from their

mathematical convenience. Although their performance when J ≈ 1

is valid, as we shall describe shortly, non-physical behaviour occurs

if material compressibility is introduced. Table 1 lists several valid-

ity criteria and physical constraints (see also Doll and Schweizer-

hof, 20 0 0; Ogden, 1984 ) for volumetric strain energy density for-

mulations. Doll and Schweizerhof (20 0 0) examined common for-

mulations and showed that Eq. (5) does not conform to crite-

ria VIII (for high expansions the stress approaches 0 rather than

∞ ) and criteria IX (for expansion the stiffness reduces to zero at

J = e ≈ 2 . 718 after which it becomes negative for J > e ). These ef-

fects are summarised in Fig. 1 . 

Furthermore it was demonstrated that Eq. 6 does not conform

to criteria V (for high shrinkage �vol approaches κ/2 rather than

∞ ) and criteria VI of Table 1 (for high shrinkage σh approaches
Fig. 1. The normalized strain energy density (left), hydrostatic stress (m
κ rather than −∞ ). These effects are summarised in Fig. 2 . Fi-

ally, these formulations exhibit one fixed type of strain depen-

ent behaviour and asymmetry in terms of the difference between

hrinkage and expansion, and therefore these formulations do not

onform to criteria X of Table 1 . 

.2. The Bischoff formulation 

Bischoff et al. (2001) presents what can be considered a higher-

rder representation of Eq. 6 : 

v ol (J) = 

κ

α2 

(
cosh 

(
α(J − 1) 

)
− 1 

)
= κ

∞ ∑ 

m =1 

α2(m −1) 

(2 m )! 
(J − 1) 2 m (7)

here α is an additional material parameter. Bischoff et al.

2001) demonstrates a good fit to the experimental hydrostatic

ompression data for rubber up to 20%. However, this formulation,

nd related polynomial forms, have the same pitfalls as the form of

q. (6) , i.e. they present with a finite strain energy, and hydrostatic

tress for J = 0 , thereby violating criteria V and VI of Table 1 . Fur-

hermore, this formulation does not offer independent control of

he behaviour for shrinkage and expansion, and therefore criteria

 of Table 1 is not met. 

.3. The modified ogden formulation 

The modified Ogden formulation ( Ehlers and Eipper, 1998; Og-

en, 1972 ) is given by: 

v ol (J ) = 

κ

β2 

(
J −β − 1 + βln (J) 

)
(8)

ith κ the bulk modulus and β (with β � = 0) a material parameter

ontrolling the degree of non-linearity. The hydrostatic stress can

e derived as: 

h (J) = 

κ

βJ 
(1 − J −β ) (9)

nd the tangent modulus: 

∂ 2 �

∂ J 2 
= 

κ

βJ 2 

(
(β + 1) J −β − 1 

)
(10)
iddle), and tangent modulus (right), for the formulation of Eq. (5) . 



K.M. Moerman, B. Fereidoonnezhad and J.P. McGarry / International Journal of Solids and Structures 193–194 (2020) 474–491 477 

Fig. 2. The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right), for the formulation of Eq. (6) . 

Fig. 3. The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right), for the modified Ogden formulation ( Eq. 8 ). Curves drawn for 

κ = 1 , and β = [ −15 , 15] . 
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ig. 3 below illustrates the behaviour of this formulation for

hrinkage and expansion and for a range of positive and negative

values. In Ogden (1972) the formulation is presented in rela-

ion to volume reductions only, and with β > 0. However, these

estrictions are not generally enforced, and if β = −2 is chosen

his formulation reduces to the volumetric contribution, imple-

ented in ABAQUS®, for the uncoupled Arruda and Boyce (1993) ,

nderle et al. (1984) , Enderle and Kilian (1987) formulations. For

hrinkage this formulation presents with suitable behaviour. For

his domain increasing β results in an increase in strain stiffening.

educing β has the opposite effect with severely negative values

ven inducing a stiffness reduction and a plateauing behaviour (e.g.

ee graph for β = −15 in Fig. 3 ). By studying Eq. (8) and Fig. (3 ) it

ecomes clear this formulation does not conform to all criteria of

able 1 in the expansion domain. Specifically if β ≥ −1 the tan-

ent tends to zero (i.e. lim J→∞ 

d 2 ψ v ol (J) 

dJ 2 
= 0 ), and negative tangents

ccur if β > −1 (e.g. see graphs for β = 2 and β = 15 in Fig. 3 ),

hereby violating criteria VII, VIII and IX . Furthermore, since this

ormulation does not offer independent control over the response

or shrinkage and expansion, it does not conform to criteria X of

able 1 . 

.4. The hyperfoam formulation 

A popular (see for instance Fernandes et al., 2015; Petre et al.,

0 06; Liu and Scanlon, 20 03; Ju et al., 2013; Fazekas and Goda,

018; Briody et al., 2012 ) formulation for modelling of highly com-

ressible materials is the so called Ogden-Hill or hyperfoam ma-

erial implemented in ABAQUS®. The formulation, (see Storåkers,

986, Hill, 1979 page 48, and developments in Blatz and Ko (1962) )

s given by: 

(λ1 , λ2 , λ3 , J) = 

N ∑ 

a =1 

2 μa 

α2 
a 

(
λαa 

1 
+ λαa 

2 
+ λαa 

3 
− 3 + 

1 

βa 
(J −αa βa − 1) 

)
(11) 
ere μa and αa are Ogden-like ( Ogden, 1984; 1972 ) hyperelastic

arameters, and βa enables additional enhancement of volumetric

ontributions. 

To review the properties of this formulation we restrict our-

elves to a first order formulation ( N = 1 ). Furthermore, for volu-

etric deformations, one may use the conditions λ1 = λ2 = λ3 =
 

− 1 
3 , reducing Eq. (11) to: 

(J) = 

2 μ

α2 

(
3(J 

α
3 − 1) + 

1 

β
(J −αβ − 1) 

)
(12)

he bulk modulus for this formulation is derived from: 

= μ
(
β + 

1 

3 

)
(13) 

herefore, to ensure κ > 0 one obtains the constraint β > − 1 
3 . Fur-

hermore, from Eq. (11) , it is clear that βa � = 0 is also a constraint.

rom Eq. (12) the hydrostatic stress can be derived as: 

h (J) = J −1 2 μ

α
(J 

α
3 − J −αβ ) (14)

nd the tangent modulus: 

∂ 2 �

∂ J 2 
= J −2 2 μ

α

(
( 
α

3 

− 1) J 
α
3 + (αβ + 1) J −αβ

)
(15)

Although this formulation is reported to be valid in the domain
1 
3 < β < 0 several issues were revealed in this study. As shown

n Fig. 4 , in this domain one encounters a reduction in the tangent

odulus eventually creating negative volumetric stiffness. Further-

ore, the stress may reduce to 0 as J = 0 is approached. It was

ound that the effect is exacerbated by the parameter α, therefore

ven if a negative β is chosen close to 0 (which appears to provide

alid behaviour in Fig. 4 ) a negative stiffness may still occur if the

parameter is sufficiently high. 

The illustrated behaviour for the domain − 1 
3 < β < 0 when

> 0 would lead one to add the constraint β > 0 for this
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Fig. 4. The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right), for the hyperfoam formulation. Curves drawn for μ = 1 , α = 8 , 

and β = [ −0 . 3 , −0 . 1] . 

Fig. 5. The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right), for the hyperfoam formulation. Curves drawn for J = [1 , 2] , 

μ = 1 , β = 5 , and α = [1 , 10] . 

Fig. 6. The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right), for the hyperfoam formulation. Curves drawn for μ = 1 , α = 8 , 

and β = [0 . 01 , 8] . 
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formulation. Fig. 5 explores the effect of varying α when β > 0.

In terms of the tangent modulus it may be seen to decay, become

constant, or become negative. The hydrostatic stress for α ≤ 6 is

seen to reach a maximum and become constant or reduced with

increasing J (due to negative stiffness). It was found that a nega-

tive tangent modulus may occur when 0 < α ≤ 6 (see expansion

domain for the graphs for α ≤ 6). Hence to avoid this it appears

that α > 6 is an additional constraint to avoid a negative tangent

modulus if β > 0. 

Fig. 6 presents the effect of varying β (when β > 0) when

α > 6 ( α = 8 ). It is clear that a positive β value enhances the

shrinkage domain while suppressing the expansion domain. 

Fig. 7 is similar to Fig. 6 except now a negative α is explored

( α = −8 ). These graphs show that now β changes its role to in-

stead enhance the expansion domain while suppressing the shrink-
ge domain. Furthermore, it was observed that a negative tangent

odulus may occur if β is close to zero (see graph for β = 0 . 01 ). 

In summary, in the above analysis, several additional con-

traints have been identified for the hyperfoam formulation. It ap-

ears β > 0 is a constraint. In addition, if a positive α parameter

s used, α > 6 appears a requirement. If instead negative α val-

es are employed a negative tangent modulus might occur for β
alues close to 0. It is therefore concluded that the hyperfoam for-

ulation is highly constrained in terms of the choice of β and α. 

For conventional Ogden hyperelastic formulations (see

gden, 1984 ) the parameter α usually controls the degree of

on-linarity (or strain hardening) predominantly for the deviatoric

ehaviour, and for fitting, positive or negative α parameters may

equired. However, as demonstrated here, for this Ogden-like hy-

erfoam formulation, α not only strongly influences the volumetric
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Fig. 7. The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right), for the hyperfoam formulation. Curves drawn for μ = 1 , α = −8 , 

and β = [0 . 01 , 8] . 
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ehaviour, it also changes the role of β (from enhancing shrinkage

o enhancing expansion) when it changes sign. Furthermore, the

uggested constraint α > 6 (for α > 0) may impose a potentially

ndesirable degree of non-linearity on the deviatoric response. For

nstance, some materials may demonstrate little strain stiffening

uch that they require α < 6 (this includes Neo-Hookean be-

aviour, which requires α = 2 ). Finally, even if suitable constraints

re implemented, this formulation does not offer independent

ontrol in terms of enhancement for the shrinkage and expansion

omains, it therefore does not satisfy criteria X of Table 1 . 

.5. The Doll and Schweizerhof formulation 

Doll and Schweizerhof (20 0 0) proposed the following volumet-

ic strain energy density formulation: 

v ol (J ) = 

κ

α + β

(
1 

α + 1 

J α+1 + 

1 

β − 1 

J −(β−1) 
)

− κ

(α + 1)(β − 1) 

(16) 

ith the material parameter constraints: α > 0 and β > 1. Besides

atisfying all criteria listed in Table 1 , this formulation also offers

ome control over the response in shrinkage and expansion. Fur-

hermore, by choosing α = β the pressure symmetry p(J) = −p( 1 J )

s obtained, and by using β = α + 2 one obtains symmetry in

erms of strain energy, i.e. �(J) = �( 1 J ) . Fig. 8 illustrates the ef-

ect of the parameter α. It enhances the response for expansion

hile mildly suppressing the response for shrinkage. 

The parameter β has the opposite effect, as Fig. 9 shows, since

t enhances the response for shrinkage while suppressing the re-

ponse in expansion. 
ig. 8. The normalized strain energy density (left), hydrostatic stress (middle), and tangen

or κ = 1 , β = 3 , and α = [0 . 1 , 4] . 
Although this formulation offers a way to control the response

or shrinkage and expansion through the parameters α and β , both

arameters have an effect on both domains. Therefore, since the

ontrol is not independent, criteria X of Table 1 is not fully met. 

Furthermore, it is noted here that this formulation has the

roperty that the minimum stiffness state need not be at J = 1 (see

ocation of minima in the image on the right of Fig. 9 ). Although

his is in principle not invalid, it may not be realistic or desirable. 

.6. The Montella formulation 

Montella et al. (2016) proposed the following volumetric strain

nergy density formulation: 

v ol (J) = 

κ

2 β1 

e β ln (J) 2 + 

κ2 

mβ2 

e β2 | ln (J) | m (17)

ote that it is presented here by making use of tr ( ln (U )) =
n ( det (U )) = ln (J) , with U = 

√ 

C the right stretch tensor. To con-

orm to criteria I of Table 1 (zero strain in the reference state) the

ollowing trivial modification can be made: 

v ol (J) = 

κ

2 β1 

(
e β1 ln (J) 2 − 1 

)
+ 

κ2 

mβ2 

(
e β2 | ln (J) | m − 1 

)
(18)

ere κ is the bulk modulus, and κ2 is referred to as the large

train bulk modulus. The parameters β1 and β2 , are dimensionless

nd have the constraints β1 ≥ 1 
8 and β2 ≥ 1 

8 . 

Fig. 10 illustrates the effect of varying the parameter β1 and in-

ludes the lower limit β1 = 

1 
8 . This parameter β1 is seen to allow

or the simultaneous variation of response for shrinkage and ex-

ansion. The parameter β2 has a similar effect in the second term

f Eq. (18) . The parameter κ2 offers added control of the slope for

igher strains. 
t modulus (right), for the Doll and Schweizerhof (20 0 0) formulation. Curves drawn 
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Fig. 9. The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right), for the Doll and Schweizerhof (20 0 0) formulation. Curves drawn 

for κ = 1 , α = 3 , and β = [1 . 1 , 5] . 

Fig. 10. The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right), for the Montella et al. (2016) formulation. Curves drawn for 

κ = 1 , κ2 = 1 , β2 = 

1 
8 
, m = 4 , and β1 = [ 1 

8 
, 48 . 

Fig. 11. The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right), for the Montella et al. (2016) formulation. Curves drawn for 

κ = 1 , κ2 = 1 , β2 = 

1 
8 
, β1 = 

1 
8 
, and m = [2 . 124] . 
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Fig. 11 illustrates the effect of varying the parameter m . The pa-

rameter m can be seen the enhance the response for J > e , and

J < 

1 
e and to suppress the response in the range 1 

e < J < e . This

suppressing/enhancing effect results in the ability to a plateau re-

gion for the expansion domain. If m > 2 the second term vanishes

for J = 1 hence this appears to be a constraint on m if criteria IV of

Table 1 is to be respected. However, in this study m ≥ 4 appeared

a requirement since discontinuities were observed for the tangent

modulus when J ≈ 1 and if 2 < m < 4 (see for example the curve

for m = 2 . 1 in Fig. 11 ). 

The Montella et al. (2016) formulation of Eq. (18) offers a flex-

ible formulation for modelling of large strain volumetric defor-

mations. Further more, provided the constraints described are re-

spected, the formulation conforms to criteria I - IX of Table 1 . How-
ver, this formulation does not offer independent control of the re-

ponse for shrinkage and expansion. 

. The proposed volumetric strain energy density formulations 

Three novel volumetric strain energy densities are presented in

his section which offer separate control over the strain dependent

ehaviour for shrinkage and expansion. 

.1. Formulation 1 

The first formulation is inspired by Eq. (6) . A power was added

o the volume ratio to enable control of the degree of strain stiffen-

ng. Next two terms were created such that one features a positive
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Fig. 12. A schematic illustration of a typical σ h curve illustrating the nature of the 

parameters κ , the bulk modulus setting the initial slope, β1 , setting the rate of 

strain stiffening in expansion, β2 , setting the rate of strain stiffening in shrinkage. 
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ower and one a negative power, the former being most sensitive

o expansion while the latter is most sensitive to shrinkage, lead-

ng to: 

v ol (J) = 

κ

4 

(
1 

β1 
2 
(J β1 − 1) 2 + 

1 

β2 
2 
(J −β2 − 1) 2 

)
(19)

esides the bulk modulus κ , this formulation features the material

arameters β1 and β2 , which control the degree of strain stiffening

n terms of expansion and shrinkage respectively, with κ ∈ R > 0 ,

1 ∈ R > 2 , and β2 ∈ R > 0 . 

The hydrostatic stress for this formulation is: 

h (J) = 

κ

2 J 

(
1 

β1 

(J 2 β1 − J β1 ) − 1 

β2 

(J −2 β2 − J −β2 ) 
)

(20)

nd the tangent modulus: 

∂ 2 �v ol (J) 

∂ J 2 
= 

κ

2 J 2 

[ (
(2 − 1 

β1 

) J 2 β1 − (1 − 1 

β1 

) J β1 

)
+ 

(
(2 + 

1 

β2 

) J −2 β2 − (1 + 

1 

β2 

) J −β2 

)] 
(21) 

Fig. 12 schematically illustrates the effect of the parameters κ ,

1 , and β2 , on the hydrostatic stress. 

Fig. 13 shows the effect of varying the bulk modulus κ . 
ig. 13. The effect of κ . The strain energy density (left), hydrostatic stress (middle), a

= [0 . 25 , 4] . 
Figs. 14 and 15 illustrate the effect of varying β1 and β2 respec-

ively, demonstrating near independent control of strain hardening

or the expansion and shrinkage domains. 

Although near independent control is seen for both the mag-

itude and degree of strain stiffening of the responses for shrink-

ge and expansion, it is noted here that, similar to the Doll and

chweizerhof (20 0 0) formulation, the minimum stiffness is not

uaranteed to be κ and may not be found at J = 1 (Note the shift

n the minima for the tangent modulus in Figs. 14 and 15 ). Formu-

ation 2, discussed in the next section, avoids this behaviour. 

In Appendix A two variations of the above formulation are

riefly explored. In Eq. (A.1) of (A.1) a weighting factor was intro-

uced with the aim of providing further control over the domi-

ance of the expansion and shrinkage terms. However, this change

esults in a possible negative tangent modulus for particular pa-

ameter choices. 

To address the fact that the minimum stiffness of formulation

 only lies at J = 1 if β2 = β1 + 2 , Eq. (A.4) of (A.2) describes a

witch statement based decoupling of the expansion and shrink-

ge terms such that the expansion term is used if J ≥ 1, and the

hrinkage term if J < 1. Although this alternative form forces the

inimum tangent modulus to occur at J = 1 , and satisfies all con-

traints listed in Table 1 , it presents with a non-smooth stiffness at

 = 1 , which may not be desirable. 

.2. Formulation 2 

This section discusses a formulation which was inspired by the

nverse sigmoid shape of the hydrostatic stress. A tangent function

as chosen here since it presents with a rather elegant integral

nd derivative. The strain energy density for the proposed form is:

v ol (J) = −κa 2 ln ( cos ( 
J − 1 

a 
)) (22)

he derivative with J provides the hydrostatic stress: 

h (J) = κa tan ( 
J − 1 

a 
) (23)

he second derivative provides the tangent modulus: 

∂ 2 �v ol (J) 

∂ J 2 
= κ sec 2 

(
J − 1 

a 

)
(24) 

he parameter a is defined as: 

 = 

2 

π

{ 

(J 1 − 1) J ≥ 1 

(J 2 − 1) J < 1 

(25) 

his formulation features three material parameters, the bulk

odulus κ and two volume ratio parameters defining ”lock-up”
nd tangent modulus (right) for formulation 1. Curves drawn for β1 = 4 , β2 = 2 , 
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Fig. 14. The effect of β1 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 1. Curves drawn for κ = 1 , 

β2 = 2 , β1 = [2 . 1 , 6] . 

Fig. 15. The effect of β2 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 1. Curves drawn for κ = 1 , 

β1 = 4 , β2 = [0 . 1 , 4] . 

Fig. 16. A schematic illustration of a typical σ h curve illustrating the nature of the 

parameters κ , the bulk modulus setting the initial slope, J 1 , setting the maximum 

volume ratio asymptote, and J 2 , setting a minimum volume ratio asymptote. 
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stretches, J 1 (with J 1 > 1), and J 2 (with 0 ≤ J 2 < 1). Fig. 16 con-

tains a schematic illustration of the nature of these parameters in

relation to the hydrostatic stress. 

Both J 1 and J 2 define a volume ratio at which an asymptote

exists for strain energy, hydrostatic stress, and the tangent mod-
lus. Numerical implementations therefore should feature the con-

traints: 

�v ol (J ≥ J 1 ) = �v ol (J ≤ J 2 ) = ∞ 

σh (J ≥ J 1 ) = −σh (J ≤ J 2 ) = ∞ 

∂ 2 �v ol (J ≥ J 1 ) 

∂ J 2 
= 

∂ 2 �v ol (J ≤ J 2 ) 

∂ J 2 
= ∞ (26)

The bulk modulus κ sets the slope for the hydrostatic stress

t J = 1 . Beyond J = 1 the volume ratios J 1 and J 2 determine how

apidly stiffness is enhanced for the expansion and shrinkage do-

ains. If a material exhibits a behaviour such that further volume

hange beyond a particular point is hindered, this can be modelled

sing an appropriate choice for these volume ratio asymptote lev-

ls. For many materials however J 2 = 0 is most appropriate as this

s where this asymptote may naturally lie. Clearly if J 2 = 0 is kept

xed this formulation has only the two remaining parameters κ
nd J 1 . Both asymptote levels can be set at a level beyond the ex-

ected deformation levels or brought in closer to further enhance

train stiffening. Fig. 17 illustrates the effect of varying the bulk

odulus κ and demonstrates how it changes the slope at J = 1 for

he hydrostatic stress. 

Fig. 18 presents the effect of varying J 1 . The parameter J 1 is seen

o shift the location of the asymptote in the expansion domain. 

Fig. 19 presents the effect of varying J 2 . It is clear how J 2 en-

bles one to alter the location of the asymptote in the shrinkage

omain. 

From Figs. 17, 19 , and 18 it is clear that, contrary to the other

ormulations, the minimum tangent modulus is guaranteed to oc-

ur at J = 1 and is equal to κ . 
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Fig. 17. The effect of the bulk modulus. The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 2. Curves drawn 

for J 2 = 0 , J 1 = 2 and κ = [0 . 25 , 2] . 
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Fig. 18. The effect of the J 1 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 2. Curves drawn for κ = 1 , 

J 2 = 0 and J 1 = [1 . 5 , 2] . 
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Fig. 19. The effect of the J 2 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 2. Curves drawn for κ = 1 , 

J 1 = 2 and J 2 = [0 , 0 . 5] . 
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Furthermore, one may note that the following simultaneous

ymmetries exist: 

v ol (J s ) = �v ol (J e ) , σh (J s ) = −σh (J e ) , 
∂ 2 �v ol (J s ) 

∂ J 2 
= 

∂ 2 �v ol (J e ) 

∂ J 2 

(27) 

where subscript s and e refer to shrinkage and expansion respec-

ively), if 

 e = (J s − 1) 
J 1 − 1 

J − 1 

+ 1 , J s = (J e − 1) 
J 2 − 1 

J − 1 

+ 1 (28)

2 1 
herefore if simultaneous symmetry in terms of J and 1/ J is desired

ne could use: 

 2 = 

1 

J 1 
(29) 

Formulation 2 adheres to all criteria of Table 1 , with the excep-

ion of criteria VII and VIII , due to the existence of the asymptote

t J 1 in the expansion domain. Indeed it may be deemed unnatu-

al to have the asymptote depart from J = 0 for the shrinkage do-

ain, or to have an asymptote at all for the expansion domain.

.3 therefore presents a variation to formulation 2 which does not

ave these features, instead it employs a form similar to Eq. 7 but

ith natural asymptotic behaviour added at J = 0 . 
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Fig. 20. The typical response of a cellular solid to shrinkage and expansion. The 

shrinkage domain typically features several phases, e.g. an initial elastic domain (I), 

followed by a compaction domain (II), and a densification domain (III). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. A schematic illustration of a typical σ h curve illustrating the nature of the 

parameters κ , the bulk modulus setting the initial slope, J 1 , setting the maximum 

volume ratio asymptote, and J 2 , setting a minimum volume ratio asymptote, s 1 , set- 

ting the softening stress in expansion, q 1 setting the dominance of the softening 

in expansion, s 2 , setting the softening stress in shrinkage, and q 2 setting the domi- 

nance of the softening in shrinkage. 
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4.3. Formulation 3 

Formulation 3, proposed below, is an extension of formula-

tion 2, of Section 4.2 , to capture non-monotonic strain stiffen-

ing, as observed in cellular materials, lattices, and foams ( Gibson,

2005; Gibson et al., 1981 ). As illustrated in Fig. 20 , such materi-

als exhibit three main phases during large volumetric compression

( Gibson, 2005 ): (I) an initial linear or moderately strain stiffening

phase; (II) a reduced stiffness/plateau region due to elastic buck-

ling of the material microstructure; and (IIIiii) a region of increased

stiffness due to densification of the structure. Such non-monotonic

stiffening behaviour with an elastic buckling plateau region is ob-

served for elastometric foams, such as polyurethane foams (e.g.

Kim et al., 2018; Petre et al., 2006 ), and cork (e.g. Fortes et al.,

1989; Gibson et al., 1981; Le Barbenchon et al., 2019; Maji et al.,

1995; Gibson et al., 1981 ). 

As seen in Section 4.2 , Formulation 2 features the tan function

creating a vertical sigmoid shape for the hydrostatic stress. In order

to expand formulation 2 to allow for a reduced stiffness/plateau

region, an additional horizontal sigmoid function is added; in this

case a tanh function is used, with asymptotes parallel to the J axis.

Conveniently these functions share conceptually similar integrals

and derivatives. We propose the following strain energy density

function: 

�v ol (J) = κ
[ 
−(1 −q ) a 2 ln 

(
cos 

(
J−1 

a 

))
+ qb 2 ln 

(
cosh 

(
J − 1 

b 

))] 
(30)

resulting in the following expression for hydrostatic stress: 

σh (J) = κ
[ 
(1 − q ) a tan 

(
J − 1 

a 

)
+ qb tanh 

(
J − 1 

b 

)] 
(31)

with the following expression for tangent modulus: 

∂ 2 �v ol (J) 

∂ J 2 
= κ

[ 
(1 − q ) sec 2 

(
J − 1 

a 

)
+ q sech 

2 
(

J − 1 

b 

)] 
(32)

The parameters a, b , and q are defined as: 

a = 

2 
π

{
(J 1 − 1) J ≥ 1 

(J 2 − 1) J < 1 

b = 

1 
κ

{
s 1 J ≥ 1 

s 2 J < 1 

q = 

{
q 1 J ≥ 1 

q 2 J < 1 

(33)

In all cases independent values can be specified for shrinkage

( J < 1) and expansion ( J > 1). The parameter a is the same as

for formulation 2 where J 2 and J 1 set the volume ratios for the

two vertical asymptotes. Parameters s 2 and s 1 set the hydrostatic

stress asymptotes of the horizontal sigmoid function ( tanh ) in ex-

pansion and shrinkage, respectively. The parameters q 1 and q 2 set

the relative contributions of the monotonic strain stiffening be-

haviour of the tan component and the hydrostatic stress plateau
ehaviour of the tanh component. If q i = 0 formulation 2 is re-

overed, with monotonic strain stiffening. Conversely, if q i = 1 a

lateau in hydrostatic stress is obtained, but this is not followed

y a high stiffness densification region. Fig. 21 is a schematic il-

ustration to highlight the effect of the material parameters on the

ydrostatic stress. The six physically based parameters can be used

o precisely specify the three phases of volumetric deformation de-

cribed above. 

We next provide a parametric investigation of the effect of vary-

ng the parameters s 1 , s 2 , q 1 , and q 2 . The effect of κ , J 1 and J 2 is

quivalent to that of formulation 2 (see Figs. 17, 19 , and 18 respec-

ively) and therefore not repeated graphically here. Fig. 22 shows

he effect of varying s 1 . This parameter sets the plateau stress level

or expansion for the horizontal sigmoid function. 

Fig. 23 shows the effect of varying s 2 . This parameter sets the

lateau stress level for shrinkage for the horizontal sigmoid func-

ion (note that although the hydrostatic stress is negative during

hrinkage, s 2 is here defined as a positive number). 

Fig. 24 presents the effect of varying q 1 , which controls the

ominance of the stiffness reduction/plateau behaviour in the ex-

ansion domain. 

Fig. 25 presents the effect of varying q 2 , which controls the

ominance of the stiffness reduction/plateau behaviour in the

hrinkage domain. 

.4. Fitting to experimental data 

To illustrate the ability of our new formulation 1–3 to cap-

ure experimental hydrostatic compression data, Fig. 26 presents

ts to data for neoprene rubber foam ( Bardy et al., 2005 ) (1 st col-

mn), flexible open-cell polyurethane cushioning foam ( Petre et al.,

006 ) (2 nd column), natural cork ( Dart et al., 1947 ) (3 rd column),

nd rigid closed-cell polyurethane foam ( Maji et al., 1995 ) (4th col-

mn). For all fits the bulk-modulus κ was kept fixed and was in-

tead derived from the slope calculated for the small strain domain

up to 4% shrinkage). 
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Fig. 22. The effect of the s 1 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 3. Curves drawn for κ = 1 , 

J 1 = 2 , J 2 = 0 , q 1 = 0 . 98 , q 2 = 0 . 98 , s 1 = [0 . 1 , 2] , s 2 = 0 . 4 . 

Fig. 23. The effect of the s 2 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 3. Curves drawn for κ = 1 , 

J 1 = 2 , J 2 = 0 , q 1 = 0 . 98 , q 2 = 0 . 98 , s 1 = 0 . 4 , s 2 = [0 . 1 , 2] . 

Fig. 24. The effect of the q 1 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 3. Curves drawn for κ = 1 , 

J 1 = 2 , J 2 = 0 , q 1 = [0 , 0 . 98] , q 2 = 0 . 98 , s 1 = 0 . 4 , s 2 = 0 . 4 . 

Fig. 25. The effect of the q 2 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 3. Curves drawn for κ = 1 , 

J 1 = 2 , J 2 = 0 , q 1 = 0 . 98 , q 2 = [0 , 0 . 98] , s 1 = 0 . 4 , s 2 = 0 . 4 . 
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Fig. 26. Fitting of formulation 1 (top row), formulation 2 (middle row), and formulation 3 (bottom row) to experimental hydrostatic compression data. From the left to the 

right the data was obtained from Bardy et al. (2005) , Petre et al. (2006) , Dart et al. (1947) , and, Maji et al. (1995) . 
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As is evident from Fig. 26 , an increasing amounts of stiffness

reduction/plateau behaviour is observed in the experimental data

(from left to right). In the case of the neoprene and open-cell foam

the data represents fully elastic recoverable loading associated

with elastic buckling of the microstructure (rather than unrecover-

able plastic buckling). Formulation 1 cannot accurately capture the

non-linear monotonic strain stiffening behavior of noeprene rub-

ber foam; the high stiffness behaviour at high volumetric strains

is accurately predicted, but the stiffness at low volumetric strains

is under predicted. In contrast, formulation 2 accurately predicts

the neoprene rubber foam behavour for the full range of experi-

mental data. However, the inflection point observed for open-cell

polyurethane cushioning foam and natural cork, and the plateau

behaviour for closed-cell polyurethane foam are not captured. For-

mulation 3 is shown to accurately predict the reported experimen-

tal data for all four materials. 

5. Discussion 

Much attention has been given to the development of devia-

toric strain energy density functions due to the traditional focus, of

hyperelastic modelling, on nearly-incompressible rubber materials

(e.g. Rivlin and Saunders, 1951; Ogden, 1984; Treloar et al., 1976 ),

and assumed incompressible soft tissue ( Chagnon et al., 2015 ).

Comparatively few strain energy density functions have been pro-

posed for large volumetric deformations (e.g. Ogden, 1972; Bischoff

et al., 2001; Storåkers, 1986; Doll and Schweizerhof, 20 0 0; Mon-

tella et al., 2016 ). We demonstrate here that well-established and

commonly used volumetric strain energy formulations are either

not valid for large volumetric deformations, as they (i) do not ad-

here to criteria I - IX of Table 1 , or (ii) do not offer sufficient con-

trol, for either the shrinkage or the expansion domain, for fitting

of monotonic or non-monotonic strain stiffening behaviour (crite-

ria X of Table 1 ). Following a summary and critical analysis of com-

mon formulations, and the pitfalls they exhibit, we propose three

novel formulations which uniquely: (1) are valid for large volumet-
ic deformations, (2) offer separate control of the volumetric strain

tiffening behaviour during shrinkage (volume reduction) and ex-

ansion (volume increase), and (3) in the case of formulation 3, of-

er the ability to capture non-monotonic volumetric stiffening. The

resented formulations offer superior flexibility for experimental

tting of the large volumetric strain behaviour of hyperelastic ma-

erials, and are demonstrated to adhere to all physical constraints

nd criteria listed in Table 1 . 

• Formulation 1 ( Section 4.1 ) exhibits control of the magnitude

and degree of strain stiffening in shrinkage and expansion do-

mains which is not strongly coupled. This presents an incre-

mental improvement of on the model of Doll and Schweizer-

hof (20 0 0) , in which the degree of strain stiffening in shrinkage

and expansion is strongly coupled. One property of formulation

1 however is that the minimum of the tangent modulus may

not occur at J = 1 , and is therefore lower than κ , for a partic-

ular choice of parameters. Although this is a property shared

with many other formulations, and this does not render the for-

mulation invalid by any means, it may be deemed undesirable

or unrealistic given particular experimental data. 

• Formulation 2 ( Section 4.2 ) was developed to exhibit many of

the properties of formulation 1 but also guarantees that the

minimum stiffness is found at J = 1 . This model is formulated

using logarithmic and trigonometric functions, and features a

bulk modulus κ to set the initial slope and two controllable

asymptotes, one at the volume ratio J 1 for expansion, and one

at the volume ratio J 2 for shrinkage. For shrinkage J 2 can be

set at 0 to enable, for instance, infinite strain energy at J = 0 ,

as is common. However, it is possible to bring J 2 closer to 1

to enable more rapid stiffening during volume reduction. Sim-

ilarly J 1 is the volume ratio at which an asymptote exists for

volume expansion. Control of strain stiffening in shrinkage and

expansion domains is fully decoupled, i.e. changes in one do-

main do not influence the other. In terms of achieving symme-

try, formulation 2 also enables, through an appropriate choice
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Fig. 27. Two types of octet truss lattice structures subjected to hydrostatic loading. 

Graphs on the right show hydrostatic stress ( σ h ) as a function of the volume ratio 

( J ). The initial configuration for each lattice is shown in 3D on the left. 2D views 

of the initial and loaded configurations are also visualized schematically within the 

graphs on the right. The top row is for a regular octet-truss lattice while the bottom 

row is for an octet-truss lattice with initially curved features. 
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of parameters, simultaneous symmetry in terms of �v ol (J) =
�v ol ( 

1 
J ) , p(J) = −p( 1 J ) , and ∂ 2 �v ol (J ) / ∂ J 2 = ∂ 2 �v ol ( 

1 
J ) / ∂ J 2 , i.e.

the strain energy density, hydrostatic stress and tangent mod-

ulus for a given percentage volume increase or decrease can

be made to be equivalent. Furthermore, formulation 2 ensures

that, even for deviations from symmetry, the minimum tangent

modulus always occurs at J = 1 and is equal to κ . A.3 provides

a variation to formulation 2 whereby the asymptote parameters

are avoided. 

• Formulation 3 ( Section 4.3 ) extends formulation 2, of

Section 4.2 , to capture the non-monotonic stiffening reported

for cellular materials, lattices, and foams ( Gibson, 2005; Gibson

et al., 1981 ). A horizontal sigmoid function is superimposed

on formulation 2 creating softening behaviour. The param-

eters s 1 and s 2 define hydrostatic stress asymptotes on the

horizontal sigmoid function for the expansion and shrinkage

domain respectively. Furthermore parameters q 1 or q 2 define

the dominance of these potential softening plateaus. Similar to

formulation 2, formulation 3 offers independent control of the

behaviour for the expansion and shrinkage domains. 

Formulation 3 is shown to provide accurate predictions of

he non-linear pressure volumetric relationship under hydrostatic

ompression for four materials, namely: neoprene rubber foam

 Bardy et al., 2005 ), flexible open-cell polyurethane cushioning

oam ( Petre et al., 2006 ), natural cork ( Dart et al., 1947 ), and

igid closed-cell polyurethane foam ( Maji et al., 1995 ). As discussed

bove, the ability to accurately model non-monotonic volumetric

hrinkage and expansion will be important for the simulation and

esign of next-generation lattice materials, including ultraporous

ponges ( Mader et al., 2018 ) graphene foams aerogels (e.g Pan

t al., 2018; Shang et al., 2018; Wu et al., 2015; Chandrasekaran

t al., 2017 ) in which elastic recovery from compressive strains of

0% have been reported ( Hu et al., 2013 ). Graphene aerogels can

lso be 3D printed ( Zhang et al., 2016 ) allowing for the creation

f highly elastic, deformable, and complex lattices structures. For-

ulation 3 can also be used to simulate non-monotonic volumet-

ic stiffening of compressible biological materials, such as arteries

 Nolan and McGarry, 2016 ), and the myocardium ( McEvoy et al.,

018 ). Formulation 3 can also be extended to account for plas-

ic buckling in the plateau region (as observed for polypropylene

oams ( Viot, 2009 ), metallic foams ( Deshpande and Fleck, 2001 ),

nd trabecular bone ( Kelly and McGarry, 2012; Kelly et al., 2013 ). 

Fig. 27 presents two examples of highly elastic lattice struc-

ures which can be 3D printed in rubber-like polymeric ma-

erials. The lattices are subjected to hydrostatic deformations.

he structure and visualizations are based on dedicated fi-

ite element (FEBio 2.9.1 Maas et al., 2012 ) models (the lat-

ice is meshed using hexahedral elements, solid material is rep-

esented as Neo-Hookean, i.e. ψ = 

c 
4 

(
tr ( ̃ C ) − 3 

)
+ 

κ
2 ln (J) 2 , with

 = 1 MPa, and κ = 50 MPa. A related demo has been made

vailable open source as part of GIBBON ( Moerman, 2018 ):

EMO_febio_0054_lattice_hydrostatic_01.m ). The top 

ow in Fig. 27 is for the regular octet-truss lattice structure, which

emonstrates fairly linear behaviour in expansion and non-linear

lateauing and densification during shrinkage due to elastic buck-

ing of struts. The bottom row is for an octet-truss lattice with

nitially curved features. Such features are straightened during ex-

ansion creating a source of stiffness enhancement. During shrink-

ge however the initially curved features immediately and gradu-

lly continue to bend, resulting in the absence of the more sudden

nitiation of bending seen in the structure of the top row. 

Future work will include the use of the presented formulations

or modelling of highly compliant 3D printed polymer lattice struc-

ures with tailorable strain stiffening and densification behaviour.

uch materials are useful for the design of custom biomechanical
upport structures e.g. at the interface between tissue and pros-

hetic or orthotic devices. 
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ppendix A. Alternative formulations 

1. Formulation 1 with a weighting factor 

In this variation of formulation 1 of Section 4.1 a weighting fac-

or q ∈ [0, 1] is introduced with the aim of scaling the contribu-

ions for expansion and shrinkage. The strain energy density for

https://doi.org/10.13039/501100000780
https://doi.org/10.13039/501100007601
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Fig. A28. The effect of q . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 1. Curves drawn for κ = 1 , 

β1 = 2 , β2 = 4 , q = [0 . 05 , 0 . 95] . 
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this variation is: 

�v ol (J) = 

κ

2 

(
q 

β1 
2 
(J β1 − 1) 2 + 

1 − q 

β2 
2 

(J −β2 − 1) 2 
)

(A.1)

Leading to the following expression for the hydrostatic stress: 

σh (J) = 

κ

J 

(
q 

β1 

(J 2 β1 − J β1 ) − 1 − q 

β2 

(J −2 β2 − J −β2 ) 
)

(A.2)

and the tangent modulus: 

∂ 2 �v ol (J) 

∂ J 2 
= 

κ

J 2 

[ 
q 

β1 

(
(2 β1 − 1) J 2 β1 − (β1 − 1) J β1 

)
+ 

1 − q 

β2 

(
(2 β2 + 1) J −2 β2 − (β2 + 1) J −β2 

)] 
(A.3)

It is noted that if q = 1 and β1 = 1 this formulation reduces to the

familiar form of Eq. (6) . Furthermore, if q = 0 . 5 and β2 = β1 + 2

the symmetry �v ol (J) = �v ol ( 
1 
J ) is obtained. 

Fig. A.28 illustrates the effect of varying q , and shows how it

allows one to control the dominance of the expansion and shrink-

age contributions. Hence for fitting purposes this formulation of-

fers flexibility in terms of both the magnitude and the degree of

strain stiffening of the response. 

However, it was found that a negative tangent may occur when

q is altered to severely favour a particular domain (e.g. q close to 0

or 1) while β parameter for the ”suppressed” domain is very high.

This is illustrated in Fig. A.29 where the combination q = 0 . 05 and

β1 = 30 (black curve in the left graph of Fig. A.29 ), or q = 0 . 95 and

β2 = 30 (red curve in the right graph of Fig. A.29 ), resulted in a

negative tangent. 
Fig. A29. The normalized tangent modulus when κ = 1 , q = [0 . 05 , 0 . 95] and β1 = 

30 , β2 = 3 (left), or β1 = 3 , β2 = 30 (right). 
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2. Formulation 1 with a switch statement 

A second variation on formulation 1 is now presented which

ontains a switch statement to fully uncouple the behaviour for

hrinkage and expansion: 

v ol (J) = 

κ

2 

⎧ ⎨ 

⎩ 

1 

β1 
2 (J β1 − 1) 2 J ≥ 1 

1 

β2 
2 (J −β2 − 1) 2 J < 1 

(A.4)

eading to the following expression for the hydrostatic stress: 

h (J) = 

κ

J 

⎧ ⎨ 

⎩ 

1 
β1 

(J 2 β1 − J β1 ) J ≥ 1 

1 
β2 

(J −2 β2 − J −β2 ) J < 1 

(A.5)

nd the tangent modulus: 

∂ 2 �v ol (J) 

∂ J 2 
= 

κ

J 2 

⎧ ⎨ 

⎩ 

1 
β1 

(
(2 β1 − 1) J 2 β1 − (β1 − 1) J β1 

)
J ≥ 1 

1 
β2 

(
(2 β2 + 1) J −2 β2 − (β2 + 1) J −β2 

)
J < 1 

(A.6)

his ”switch-based” variation performs similarly to formulation 1

f Section 4.1 but enables fully separated control of the expansion

nd shrinkage behaviour. Fig. A.30 illustrates the effect of varying

1 (since similar performance is obtained for β2 these graphs are

ot shown here). Clearly fully independent control of strain hard-

ning for the expansion and shrinkage domains is achieved. Fur-

hermore, by using the conditional switch, the minimum stiffness

s guaranteed to be κ and lies at J = 1 . However, the switch-based

mplementation presents with a potentially undesired artefact in

he form of a non-smooth transition at J = 1 for the tangent mod-

lus (see the kink at J = 1 for the tangent graphs of Fig. A.30 ). 

3. Formulation 2 without asymptote parameters 

This variation is a hybrid between Eq. 7 and formulation 2: 

v ol (J) = κ

{ 1 
β2 

1 

( cosh (β1 (J − 1)) − 1) J ≥ 1

1 
2 

[ 
1 
β2 

2 

( cosh (β2 (J − 1)) − 1) − 4 
π2 ln ( cos ( π

2 
(1 + J))) 

] 
J < 1

(A.7)

esulting in the following expression for the hydrostatic stress: 

h (J) = κ

{ 1 
β1 

sinh (β1 (J − 1)) J ≥ 1 

1 
2 

[ 
1 
β2 

sinh (β2 (J − 1)) − 2 
π tan ( π

2 
(1 + J)) 

] 
J < 1 

(A.8)
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Fig. A30. The effect of β1 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 1. Curves drawn for κ = 1 , 

β2 = 2 , β1 = [2 . 1 , 6] . 

Fig. A31. The effect of β1 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 2. Curves drawn for κ = 1 , 

β2 = 3 , β1 = [1 , 12] . 

Fig. A32. The effect of β2 . The normalized strain energy density (left), hydrostatic stress (middle), and tangent modulus (right) for formulation 2. Curves drawn for κ = 1 , 

β1 = 3 , β2 = [1 , 12] . 
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nd the tangent: 

∂ 2 �v ol (J) 

∂ J 2 
= κ

{ 

cosh (β1 (J − 1)) J ≥ 1 

1 
2 

[ 
cosh (β2 (J − 1)) + sec 2 ( π

2 
(1 + J)) 

] 
J < 1 

(A.9) 

ere β1 and β2 are material parameters controlling volumetric

train-dependent stiffening. As Eq. (A.7) shows both the shrinkage

nd expansion domain feature a form equivalent to Eq. (7) . How-

ver, to adhere to criteria V and VI of Table 1 a term similar to

q. (22) (with a (J 2 = 0) such that a fixed asymptote occurs at J = 0 )

s added for the shrinkage domain. 
Fig. A.31 and Fig. A.32 illustrate the effect of varying the β1 

nd β2 . 

The graphs of Fig. A.31 and Fig. A.32 show fully independent

ontrol of the strain stiffening for shrinkage and expansion. This

ariation adheres to all criteria of Table 1 . The minimum tangent

ccurs at J = 1 , where, since the third derivatives for the shrinkage

nd expansion terms of Eq. (A.7) are both zero, a smooth transition

ccurs between the two domains. 

4. Formulation fitting parameters 

Table A2 below presents the parameters derived from fitting

resented in Section 4.4 . 
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Table A2 

Fitting parameters for formulation 1, 2 and 3 (if applicable units are MPa). Parameters for poor quality fits are not presented. 

id Data: Bardy et al. (2005) κ = 0 . 3785 Data: Petre et al. (2006) κ = 0 . 4400 Data: Dart et al. (1947) κ = 5 . 051 Data: Maji et al. (1995) κ = 11 . 65 

1 β2 = 0 . 2900 N.A. N.A. N.A. 

β1 = β2 + 2 

2 J 2 = 0 . 2544 N.A. N.A. N.A. 

3 s 2 = 0 . 4181 s 2 = 0 . 04629 s 2 = 0 . 3577 s 2 = 0 . 7301 

q 2 = 0 . 1316 q 2 = 0 . 5141 q 2 = 0 . 8838 q 2 = 0 . 9981 

J 2 = 0 . 2643 J 2 = 0 . 03359 J 2 = 0 . 04411 J 2 = 0 . 4290 
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